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Abstract. Dry machining has a good association with ecological and economic control. Even though dry machining 

is environment-friendly, it produces poor surface quality with excessive tool wear due to a vast amount of heat 

generation at the machining interface. This paper aims to determine the optimum machining parameters for 

enhanced machining performance. The turning process was performed under a dry environment on AISI 630 steel 

by varying the machining parameters. The experimental run for three factors, each at three levels, was framed with 

the help of Taguchi's technique. Machining responses such as tool-work interface temperature, surface roughness, 

and material removal rate were measured online and offline with corresponding measuring devices. A temperature 

measuring system was developed indigenously to measure temperature. The effect of machining parameters on 

machining response, determination of optimum machining parameters for individual machining response, the 

influence of machining parameters on machining responses, and mathematical model for individual machining 

response were discussed. Taguchi-Desirability Function Analysis was employed to determine the optimum 

machining parameters for enhancing the machining performance. Enhanced machining performance was obtained at 

the optimum parameters of 800 rpm, 0.12 mm/rev, and 0.70 mm. 
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Introduction 

Stainless steel is often used in many engineering applications for its properties such as high strength, 

hardness, and corrosion resistance [1,2]. One of the most widely used materials in the stainless-steel group is AISI 

630 steel. It is often known as a difficult-to-machine material by its composition and properties [3]. In addition, 

AISI 630 steel has superior corrosion resistance compared to 304 and 316L steel. It is used to make fasteners, 

reactor components, missile fittings, jet engine parts [4], safety valves, studs, nuts [5], sailboat propeller shafts [6] 

and implantation [7]. However, the machining of such material requires higher cutting force, resulting in higher 

friction at the machining interface, thus generating considerable heat. Its lower thermal conductivity nature retains 

the generated heat at the machining interface. It affects the quality of the machined surface and tool life, resulting in 

lower productivity and high production cost [8,9]. These problems are mitigated by selecting suitable cutting fluid 

and cooling techniques.  

The flood cooling system uses plenty of cutting fluid to reduce the cutting temperature and friction. 

Generally, the cutting fluid used in the machining industry is a conventional fluid, i.e., a mineral oil that contains 

chemical components harming the environment and workers' health. It also might cause damage to the workpiece 

surface due to chemical reactions. The quality of the fluid degrades rapidly and gets contaminated due to bacterial 

growth [10,11]. Further, the disposal of conventional cutting fluid is a difficult task that severely impacts the 

environment. Contamination of soil and water, environmental pollution, health issues for workers, and high-cost 

disposal processes are the limitations of conventional cutting fluids [12]. In addition, the cost of the cutting fluid 

during machining under a conventional environment account for approximately 8 to 16% of the total manufacturing 

cost [13]. Approximately 1.2 million workers have been affected by cutting fluids that are too toxic and hazardous to 

the environment [14]. 

The adverse effect of the conventional cutting fluid can be minimized by using it at a minimum level, and it 

can be avoided by introducing alternate cutting fluids. The primary factor in sustainable manufacturing is the 

process parameters, the tool's geometry and material, the workpiece's material and geometry, and the cooling 

method [15]. Recently, many researchers and practitioners are showing keen interest in implementing alternatives to 

conventional cutting fluid, which would reduce the quantity of the cutting fluid. Thereby, reduction in 

environmental effects and machining costs can be reduced. Some alternatives, such as dry machining, minimum 

quantity lubrication, cryogenic cooling, nanofluids, and vegetable oils, are better alternatives for conventional 

cutting fluids [16,17]. 
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The gaseous cutting fluid is a substance that is used as a cooled-pressurized liquid, and it contains air, 

nitrogen, argon, helium, and carbon dioxide. The commonly used gas-based cutting fluid is air [18]. Gas-based 

cutting fluid has higher corrosion resistance and cooling ability, which can be performed and utilized even at 

elevated temperatures. Sivaiah and Chakradhar investigated the machining performance of turning 17-4 PH stainless 

steel under various machining environments such as flood, MQL, cryogenic, and dry. Compared to other machining 

environments, reductions in temperature, surface roughness and tool wear were observed under cryogenic machining 

[19]. However, it cannot be used as a lubricant at the tool-work interface because of its poor viscosity. Poor viscous 

cutting fluid is not conducive to better lubrication, therein leading to poor surface roughness [20,21]. Moreover, the 

utilization of cryogenic cooling systems is a threat to ecology, and their installation requires high capital and 

operational cost [22].  

Minimum Quantity Lubrication (MQL) is in demand in various industries due to its environment-friendly 

nature. The essential functions of cutting fluid are obtained significantly through MQL machining. MQL system 

also provides superior cooling and better lubrication. It produces tiny oil droplets with excellent flowability and 

penetrability [23,24]. It is an efficient technique adopted for better performance, as it uses a small quantity of cutting 

fluid. It also reduces the issues associated with excessive use of coolant [25]. MQL machining method utilises 

cutting fluid in the form of mist in the machining zone. The generated mist can float in the air and would be inhaled 

by the worker. Thus, it leads to lung disease, respiratory issues, and the oesophagus, stomach, pancreas, prostate, 

colon, and rectal cancer [18]. 

Dry machining nullifies the cutting fluid usage, thus eliminating the polluted environment. Compared to 

conventional machining, dry machining makes the environment green and pollution free. It appeals to more fabulous 

eco-friendly, and cost-effective environments than wet and MQL machining [26]. Selvam and Sivaram (2018) 

experimented to investigate the surface roughness during the turning of AISI 4340 steel under dry, near-dry, and 

flood environments. It was noted that the highest surface quality of the machined workpiece was achieved by flood 

machining. It was also found that flood and near-dry machining outperformed dry machining by improving the 

surface roughness, with contributions of 13% and 4.11%, respectively [27].  

Ali Khan (2019) studied the effect of machining parameters and cryogenic environment during the turning of 

Titanium alloy, and machining responses were compared with dry and flood machining. Cryogenic machining 

reduced the tool wear, surface roughness, and energy consumption by 4%, 9% and 10%, respectively than dry 

machining [28]. Recently, Khan et al. (2020, 2022) studied the effect of flood, cryogenic and dry environments on 

Titanium alloy. The machining responses were enhanced by cryogenic and flood machining compared to dry 

machining. Despite this, they have used a dual nozzle to supply the LN2 with a flow rate of 4 L/min and 6 L/min for 

flood machining. This leads to the disappearance of cost-effective machining [29, 30]. 

It has been observed from the literature that only some alternate machining environments have been 

implemented, and only tenuous improvements in machining performance have been obtained compared to dry 

machining. Further, an alternate machining method would deteriorate the environment by utilizing the cutting fluid. 

In this view, machining parameter optimization would improve the dry machining performance. Very few 

researchers have investigated the machining of AISI 630 steel so far. Furthermore, it has been observed that more 

studies are needed in machining the chosen material. In the present study, multi-response optimization was 

performed using Taguchi-based desirability function analysis to enhance machining performance.  

 

1. Materials and Methods 

All the experiments were conducted to measure the machining responses under a dry environment using Kirloskar 

make Turnmaster-35 model centre lathe with variable speed and feed drive. The stainless-steel grade of AISI 630 

was chosen as a workpiece material for the current study. It was used in the form of a cylindrical shape with 

dimensions of 50 mm diameter and 150 mm length. A pictorial view of the workpiece with dimensions is shown in 

Figure 1. The cutting tool insert and holder were chosen based on the workpiece hardness and machining conditions. 

In addition, the cutting tool insert was chosen based on its utility in the machining industry and availability on the 

market. Ceratizit makes coated carbide inserts used as a cutting tool and has an ISO designation CNMG 120408EN-

M70 with a nose radius of 0.8 mm. A new cutting edge was used for each level of process parameters and it is 

mounted on a tool holder with ISO designation PCLNR 2020 K12 WIDIA. The cutting tool insert and tool holder 

are shown in Figure 2. 

 

 
 

Fig. 1. - Workpiece material used during the experiment 
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Fig. 2. - Pictorial view of tool insert and tool holder 

 
2. Measuring devices for machining responses 

The machining responses, such as tool-work interface temperature, surface roughness and material removal 

rate, were measured with appropriate measuring equipment. The machining responses were measured online and 

offline during and after turning under variable machining parameters. All the mechanical works are converted into 

thermal energy during the machining process. A considerable amount of heat is generated in the machining zone. It 

affects productivity, surface quality, workpiece dimensions, tool wear and other machining responses. Due to this, 

investigations of measuring tool-work interface temperature are of utmost importance. 

Temperature was measured using a K-type thermocouple, and it is positioned in the modified tool insert. A pictorial 

view of the modified tool inserts and thermocouple is shown in Figure 3. An electric spark discharge machine made 

a hole in the tool insert with a 1.5 mm diameter and 3.76 mm depth. The hole was positioned 1 mm from the cutting 

edge and 1 mm below the rack surface. Thermocouple was inserted in the tool insert where the hole was made. The 

criteria for selecting thermocouples were the measuring temperature range and accuracy; availability in the market 

and cost were also considered. 

 

 
 

Fig.3. - Pictorial view of modified tool insert and thermocouple 

 

Tool-work interface temperature was measured using an in-house developed temperature measuring system 

(TMS). A thermocouple, amplifier, UNO Arduino, and personal computer are the components utilised to develop 

TMS. The components are connected, as shown in Figure 4. The processor was programmed with code for 

measuring the temperature, which assisted the TMS in simultaneously measuring the temperature and machining 

time.   

 
 

Fig. 4. - Temperature measuring system 
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The quality of the product is identified with the value of surface roughness. The surface roughness of the 

machined parts was measured offline using Mitutoyo make SJ-210 model after the turning process. Surface 

roughness was measured around the machined workpiece at different locations, and the average value was taken into 

account. The material removal rate identifies the productivity of the machining process. It was determined using the 

conventional method. The measurement of the material removal rate is done offline. The weight of the workpiece 

was measured using a weighing machine before and after the machining at each level of machining parameters. The 

material removal rate is defined as the ratio of the difference between the weight of the workpiece before and after 

the turning process to the time taken. Equation (1) represents the material removal rate at each level of machining 

parameters: 𝑀𝑅𝑅 =  𝑊𝑖 − 𝑊𝑓𝑡 (𝑔/𝑚𝑖𝑛) 
         

(1) 

 

where Wi, Wf and t are represented as the weight of the workpiece before and after the machining and time of 

cutting, respectively. 

 

3. Taguchi's technique 
Taguchi's technique is an excellent tool for optimizing the parameters of any machining process. Depending 

on the type of procedure, the approach is typically conducted utilizing L9, L18, or L27 orthogonal array system. 

Primarily, L9 orthogonal array was used to carry out the experimental design in most situations where the process 

was built with three machining parameters. The design of the experiment under the general full factorial method sets 

a total of twenty-seven experiments for three factors at three different levels. As the number of experimental runs 

increases, so does the cost and effort require. The experiment design is more economical when setting it up using the 

Taguchi technique because it reduces the experimental setup substantially compared to the conventional 

experimental design approach.  

This study performed the turning process on AISI 630 stainless steel in a dry environment. Taguchi L9 

orthogonal array design was selected for designing the experiments. The experiments were conducted by varying the 

machining parameters such as cutting velocity, feed rate and depth of cut. Each machining parameter varied at three 

levels. Nine experiments were employed to determine the optimum machining parameters for enhanced turning 

performance in terms of lower temperature and surface roughness (Ra) and higher material removal rate (MRR). 

The machining parameters at different levels are presented in Table 1. 

 
Table 1. Machining parameters and their levels for the turning process 

Symbol Machining parameters Level 1 Level 2 Level 3 

v Cutting speed (rpm) 700 800 900 

f Feed rate (mm/rev) 0.06 0.12 0.18 

ap Depth of cut (mm) 0.35 0.70 1.05 

 

The Signal to Noise (S/N) ratio is the mean and standard deviation ratio. The process is considered good in 

any machining process when the temperature and surface roughness are smaller and the material removal rate is 

larger. The mean S/N ratio for tool-work interface temperature and surface roughness was calculated using the 

'lower the better' response, and 'larger the better' was used for the material removal rate: 

 

S/N ratio smaller the better = −10 log 1𝑛 ∑ 𝑅2 (2) 

S/N ratio Larger the better = −10 log 1𝑛 ∑ 1𝑅2 (3) 

 

where n - number of observed data; 

           R - observed data for each response 

The value of the S/N ratio for the temperature and Ra was calculated using Equation (2). Equation (3) 

calculates the S/N ratio for the MRR. Minitab 19.1 is the statistical analysis tool utilized for performing the Taguchi 

technique. 

 

4. Desirability Function Analysis 

Desirability Function Analysis (DFA) is a multi-criteria decision-making statistical tool. It is used to 

determine the optimum input parameters for the output responses. DFA is a well-known technique adopted in the 

industry to simultaneously determine the optimum independent variable. The objective of the current study is to 

estimate the best among the given set of experiments with optimal multi-responses. The responses have conflicting 

criteria, such as smaller, nominal, or better. DFA is implemented to avoid such conflicting criteria.  

Harrington was the one who first introduced DFA in 1967. Further, the modification has been extended by 

Derringer and Suich. It is implemented to estimate the machining responses of many researchers in different 

machining processes, namely EDM, end milling, and tuning. In this methodology, a set of experiments is 
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undesirable if any of the output responses falls outside the desired boundary. The objective is to identify the 

optimum machining parameters that produce the highest desirable index value for the responses. The desirability 

value lies between zero to one. The value near 1 indicates that the response is within the desirable and ideal limits. 

The value near zero represents the response being outside the desired limit and considered undesirable. 

In the present study, tool-work interface temperature, Ra and MRR are considered performance 

characteristics of the turning process. Machining performance is enhanced by reducing the temperature and Ra and 

increasing the MRR. All the machining responses are normalized using the desirability function. Therefore, the 

'smaller the better' desirability function is applied for temperature and Ra, whereas the 'larger the better' is used for 

MRR. Individual desirability values for the machining response to be maximized are estimated using Equation (4). 

Individual desirability values for minimizing machining response are estimated using Equation (5): 

 𝑑𝑖 (𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑒 𝑏𝑒𝑡𝑡𝑒𝑟) = ( 𝑦𝑖 − 𝑦𝑚𝑖𝑛𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)𝑟
 

(4) 

𝑑𝑖 (𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑒 𝑏𝑒𝑡𝑡𝑒𝑟) = ( 𝑦𝑚𝑎𝑥 − 𝑦𝑖𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)𝑟
 

(5) 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐶𝐷) = [𝑑1𝑟1 × 𝑑2𝑟2 × 𝑑3𝑟3 × … ]1𝑤 
(6) 

  

where di - individual desirability value;  

            yi - current value of the machining response;  

            ymin - minimum value of the machining response;  

            ymax - maximum value of the machining response;  

            r - weightage to the individual machining response, w = number of machining responses 

The composite desirability value for all sets of experiments is calculated using Equation (6). It is estimated as 

the geometric mean of the individual desirability values of the machining responses. The maximum composite 

desirability value indicates optimal machining parameters for multiple machining responses. 

 
Table 2. Experimental plan and machining responses under dry turning 

S. No 
Machining Parameters Machining responses 

v (rpm) f (mm/rev) ap (mm) T (°C) Ra (μm) MRR (g/min) 

1 700 0.06 0.35 140.50 0.454 16.056 

2 700 0.12 0.7 196.25 0.936 72.000 

3 700 0.18 1.05 244.25 2.114 132.300 

4 800 0.06 0.7 210.25 0.963 49.524 

5 800 0.12 1.05 274.25 1.634 100.800 

6 800 0.18 0.35 192.00 1.268 77.143 

7 900 0.06 1.05 293.50 1.726 56.786 

8 900 0.12 0.35 215.25 1.099 49.286 

9 900 0.18 0.7 236.75 2.076 113.400 

 

Machining responses for enhanced machining performance during AISI 630 stainless steel turning are 

investigated under a dry environment. The machining responses are measured online and offline. The tool-work 

interface temperature is measured during the turning process (online). Surface roughness and material removal rate 

are measured after turning (offline). The machining parameters for the process and its resultant machining responses 

are presented in Table 2. 

 

5. Results and discussion 

Machining responses depend on several factors, such as cutting tool and workpiece material, machining 

environment, and parameters. Among all of these, the machining parameter is the one that can be controlled during 

the turning process. The effect of cutting speed, feed rate, and depth of cut on tool-work interface temperature is 

shown in Figure 4. It is observed that the tool-work interface temperature increased with the increase in the levels of 

all machining parameters. The rotary movement of the workpiece resists the cutting tool's linear movement, which 

results in heat generation at the machining zone. Friction between the tool and workpiece is further increased when 

the cutting speed, feed rate, and depth of cut is increased. Hence the temperature at the interface increased. In the 

current study, tool-work interface temperature was increased when the cutting speed, feed rate and depth of cut 

increased, respectively. 
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Fig. 4. - Effect of machining parameters on tool-work interface temperature 

 
Fig. 5. - Effect of machining parameters on surface roughness 

 

Surface roughness is the common term used in the manufacturing industry to measure the quality of the 

machined surface. In this study, the surface roughness of the machined workpiece was measured by varying 

machining parameters. Variations in surface roughness by cutting velocity, feed rate, and depth of cut are depicted 

in Figure 5. It was noticed that the surface roughness of the workpiece increased with increasing cutting speed. An 

increment in the cutting speed increases the friction between the tool and workpiece, thus resulting generation of 

higher tool-work interface temperature. The surface of the workpiece becomes softer due to higher temperature at 

the machining interface and, consequently, more adhesion of workpiece particles on the tool flank faces. This results 

in more tool marks on the workpiece, leading to a poor surface finish. Therefore, higher surface roughness was 

obtained. 

It was also observed that the surface roughness value was found to increase in trend as the feed rate and depth 

of cut are increased, respectively. Higher cutting force and generation of heat at the machining interface caused tool 

marks on the machined workpiece when increasing the feed rate [31]. Surface roughness is also increased due to a 

built-up edge (BUE) on the cutting tool. Movement of the cutting tool is resisted by the workpiece when the depth 

of the cut is increased, resulting in a more BUE formation. Thus, the machined workpiece's surface roughness 

increased as the cut depth increased. The trends obtained from this study for surface roughness at different turning 

parameters concurred with the machining theory [19,32]. 

 

 
 

Fig. 6. - Effect of machining parameters on material removal rate 

 

The material removal rate is the key control parameter for machining time and productivity. Higher 

productivity at lower machining time is achieved with higher material removal rate. The effect of cutting speed, feed 

rate and depth of cut on the material removal rate is shown in Figure 6. The material removal rate was found to 

increase when the levels of all the machining parameters increased. It is well-known that material removal rate is a 

function of machining parameters (MRR = f (cutting speed, feed rate, depth of cut)). Thus, higher MRR was 
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obtained by increasing the machining parameters. Higher material removal rate is possible when the chip reduction 

coefficient is lower [31,33]. This can be achieved when increasing the machining parameters. 

 

6. Identification of optimum machining parameters for individual machining responses 
In any machining process, improved performance is obtained at optimum parameters. Prediction of optimum 

machining parameters is necessary for any machining process. Minitab 19.1 was employed to examine the 

machining responses, and the results of the mean S/N ratio at all levels of machining parameters were tabulated and 

presented. A higher value of the S/N ratio denotes the minimum changes in the difference between the expected and 

measured output of the process. A higher S/N ratio for the responses at each level of machining parameters is 

highlighted. Also, the rank for the machining parameters was awarded based on the difference between the 

maximum and minimum value of the S/N ratio. The rank preference was given for the machining parameters having 

a higher difference in the S/N ratio value. A higher mean S/N ratio for the machining parameters represents a better 

machining response. Based on that, the levels of machining parameters are chosen to obtain improved machining 

performance. 

 
Table 3. Mean S/N ratio for tool-work interface temperature 

Symbol Machining parameters 
Mean S/N ratio 

Delta Rank 
Level 1 Level 2 Level 3 

v Cutting speed (rpm) -45.52 -46.96 -48.07 2.55 2 

f Feed rate (mm/rev) -46.25 -47.09 -47.20 0.95 3 

d Depth of cut (mm) -45.09 -46.83 -48.62 3.53 1 

 

The results of the mean S/N ratio for the tool-work interface temperature at all levels of process parameters 

are presented in Table 3. It is observed that the value of delta was decreased in the order of depth of cut, cutting 

speed, and feed rate, respectively. The depth of cut is considered the predominant parameter for the temperature. A 

graphical representation of the means of S/N ratio for the tool-work interface temperature at various levels of 

machining parameters is shown in Figure 7. It is clearly seen that the maximum S/N ratio was found at the cutting 

speed of 700 rpm, feed rate of 0.06 mm/rev, and depth of cut of 0.35 mm. Hence, the levels of machining 

parameters v1 – ƒ1 – d1 were chosen as the predicted optimum machining parameter at which lower tool-work 

interface temperature was obtained. 

 

 
 

Fig.7. - Mean of S/N ratio of tool-work interface temperature 

 

The results of the mean S/N ratio for the surface roughness at all levels of machining parameters are 

presented in Table 4. It was observed that the value of delta is decreased in the order of depth of cut, feed rate, and 

cutting speed, respectively. The depth of cut was considered the most predominant machining parameter for surface 

roughness. The means of the S/N ratio for surface roughness at various levels of machining parameters is shown 

graphically in Figure 8. It is seen that a cutting speed of 700 rpm, feed rate of 0.06 mm/rev, and depth of cut of 0.35 

mm is found as the level of machining parameters where the maximum S/N ratio was obtained. Hence, v1 – ƒ1 – d1 

was chosen as levels of machining parameters and considered as the predicted optimum machining parameter, which 

provided lower surface roughness. 

 
Table 4. Mean S/N ratio for surface roughness 

Symbol Machining parameters 
Mean S/N ratio 

Delta Rank 
Level 1 Level 2 Level 3 

v Cutting speed (rpm) 0.3104 -2.0000 -3.9684 4.2789 3 

f Feed rate (mm/rev) 0.8152 -1.5035 -4.9697 5.7849 2 

d Depth of cut (mm) 1.3255 -1.8142 -5.1693 6.4948 1 
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Fig. 8. - Mean of S/N ratio of surface roughness 

 
Table 5. Mean of S/N ratio for material removal rate 

Symbol Machining parameters 
Mean S/N ratio 

Delta Rank 
Level 1 Level 2 Level 3 

v Cutting speed (rpm) 34.56 37.24 36.68 2.67 3 

f Feed rate (mm/rev) 31.03 37.02 40.42 9.39 1 

d Depth of cut (mm) 31.90 37.38 39.20 7.29 2 

 
 

Fig. 9. - Mean of S/N ratio of material removal rate 

 

The response table of the means of the S/N ratio for the material removal rate at all levels of machining 

parameters is presented in Table 5. It was found that the value of delta decreased in the order of feed rate, depth of 

cut, and cutting speed, respectively. The feed rate was the most predominant machining parameter, which gives a 

more significant delta value for the material removal rate. The means of the S/N ratio for the material removal rate 

for machining parameters are represented graphically in Figure 9. It is seen that the maximum S/N ratio was found 

at 800 rpm, 0.18 mm/rev, 1.05 mm, and it was considered as the level of machining parameters for MRR. Therefore, 

the levels of machining parameter v2 – ƒ3 – d3 were chosen as the predicted optimum machining parameter to obtain 

a higher material removal rate. 

 

7. Analysis of Variance  
Analysis of Variance (ANOVA) is one of the statistical tools. Sir Ronald A Fisher is a British biologist who 

first introduced the ANOVA. It determines the most dominating independent variables on the dependent variable. It 

comprises the sum of squares, means squares and percentage contribution-related calculations. Identification of the 

dominant parameter is an essential task because it alters the machining performance of any machining process. The 

most dominant machining parameters on the machining are evaluated with the help of the ANOVA technique. The 

number of levels minus one (n-1) is the formula adopted to determine the degrees of freedom of all the machining 

parameters. The sum of the square was obtained when adding the square value of the difference between the 

machining response's mean value and the current response's value (∑ (ymean – ycurrent)2). The mean sum of the square 

was arrived at when taking the ratio between the sum of the square and the degrees of freedom. 

The results obtained from the ANOVA for tool-work interface temperature, surface roughness and material 

removal rate are shown in Table 6. Among all the machining parameters, depth of cut and feed rate was found to be 

the most dominating parameter on the tool work interface temperature, surface roughness, and material removal rate, 

respectively. Depth of cut was involved in the control of temperature and surface roughness, with the highest 

contribution of 61.72% and 44.08%, respectively. Feed rate was involved in the control of MRR, with the highest 

contribution of 56.73%. In addition, cutting speed and feed rate also considerably affect temperature and surface 

roughness, with contributions of 32.24% and 35.42%, respectively. Hence, it is confirmed from the ANOVA results 
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that the depth of cut and feed rate was considered as the machining parameters which highly influence the 

machining responses during the turning of AISI 630 steel. 
 

Table 6. ANOVA response table for the machining responses 

Machining parameters DoF 
Sum of 

squares 
Mean square p-value % contribution 

Tool-work interface temperature 

Cutting speed (rpm) 2 9.7706 4.8853 0.021 32.24 

Feed rate (mm/rev) 2 1.6208 0.8104 0.113 5.35 

Depth of cut (mm) 2 18.7045 9.3522 0.011 61.72 

Residual Error 2 0.2072 0.1036 
 

0.68 

Total 8 30.3031 
  

100.00 

Surface roughness 

Cutting speed (rpm) 2 27.521 13.761 0.065 19.17 

Feed rate (mm/rev) 2 50.855 25.428 0.036 35.42 

Depth of cut (mm) 2 63.297 31.649 0.029 44.08 

Residual Error 2 1.917 0.9583   1.34 

Total 8 143.591     100.00 

Material removal rate 

Cutting speed (rpm) 2 11.929 5.965 0.301 4.99 

Feed rate (mm/rev) 2 135.67 67.835 0.036 56.73 

Depth of cut (mm) 2 86.419 43.21 0.056 36.13 

Residual Error 2 5.139 2.569   2.15 

Total 8 239.158     100.00 

 

8. Regression model 
The dependent variable and independent variables form the structure of the mathematical model. In a 

mathematical model, the independent variables evaluate the dependent variable. A mathematical model for the 

response was developed with the help of linear regression analysis in Minitab 19.1. The predictive mathematical 

model for the temperature, surface roughness and material removal rate developed by regression analysis is 

represented as a series of Equation 7, 8, and 9 respectively: 

 T = −125.6 +  0.3075 ∗ 𝑣 +  135.4 ∗ 𝑓 +  125.83 ∗ 𝑑 

R2 = 0.9912; R2 (adj.) = 0.9859 

(7) Ra = −2.155 +  0.002328 ∗ 𝑣 +  6.43 ∗ 𝑓 +  1.263 ∗ 𝑑 

R2 = 0.9472; R2 (adj.) = 0. 9155 

(8) MRR = −40.6 −  0.0015 ∗ 𝑣 +  556.9 ∗ 𝑓 +  70.19 ∗ 𝑑 

R2 = 0. 9785; R2 (adj.) = 0. 9656 

(9) 

 

The accuracy of the predictive mathematical model was verified by the coefficient of determination R2. The 

range of R2 values varies from 0 to 1. The independent and dependent variables are a good fit when the R2 value is 

close to unity. Equation (7) represents the predicted mathematical model for tool-work interface temperature. The R2 

and adjusted R2 values were obtained as 0.9912 and 0.9859, respectively. Equation 8 represents the predicted 

mathematical model for surface roughness. R2 and adjusted R2 values are found as 0.9472 and 0.9155, respectively. 

Material removal rate at any level of machining parameters is determined using Equation 9. The R2 and adjusted R2 

values for the material removal were found as 0.9758 and 0.9656, respectively. The obtained R2 value for all three 

machining responses is close to the unit, and the variables fit well. 
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Fig. 10. - Residual plot for all the machining responses 

 

The implication of the coefficients in the predicted model was verified by using a residual plot. The straight-

line residual plot represents the residue errors in the predicted model following normal distribution, and the 

coefficients are significant. The residual plots for tool-work interface temperature, surface roughness and material 

removal rate are depicted in Figure 10. It is noticed from the plot that residuals are accumulated near the straight line 

in the plot for surface roughness. Hence, the coefficients in the mathematical model are valid for corresponding 

process parameters. 

 

9. Confirmation test 

A confirmation test has to be performed to examine the predicted model. The results of all the machining responses 

obtained during the confirmation test are given in Table 7.  

 
Table 7. Confirmation test results 

Run TWIT (°C) Ra (μm) MRR (g/s) Error (%) 

 
Exp. Reg. Exp. Reg. Exp. Reg. TWIT Ra MRR 

3 244.25 246.144 2.114 1.958 132.3 132.292 -0.775 7.372 0.006 

5 274.25 268.770 1.634 1.805 100.8 98.728 1.998 -10.474 2.056 

6 192.00 188.813 1.268 1.307 77.143 83.009 1.660 -3.064 -7.603 

8 215.25 211.439 1.099 1.154 49.286 49.445 1.771 -4.991 -0.322 

 

The test was conducted by choosing the response randomly from the design of the experiments. It is seen 

from Table 10 that variation in the percentage of residual error among the experimental and predicted model was 

observed within 10%. Hence, machining responses obtained from experiments had good agreement with the results 

determined by the predicted model. 

 

10. Determination of optimum machining parameter 
Each level of machining parameter and its response sets up the desired objective for the machining process. 

The desired objective (enhanced machining performance) of the process is achieved through optimization. The 

objective is obtained in a specific range by setting the machining parameters from low to high. Lower tool-work 

interface temperature, surface roughness, and higher material removal rate are the quality characteristics that 

enhance machining performance. It is necessary to combine all three machining responses for better performance. 

Taguchi-desirability function analysis (DFA) determines the optimum machining parameters for multiple responses. 
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Table 8. Composite desirability values for experimental run 

Run 

Machining responses Individual desirability 
Composite 

Desirability 
Rank 

T Ra MRR T Ra MRR 

1 140.50 0.454 16.056 1.0000 1.0000 0.0000 0.0000 7 

2 196.25 0.936 72.000 0.8599 0.8921 0.7839 0.8440 1 

3 244.25 2.114 132.300 0.6856 0.0000 1.0000 0.0000 7 

4 210.25 0.963 49.524 0.8166 0.8852 0.6606 0.7816 3 

5 274.25 1.634 100.800 0.5014 0.6615 0.9001 0.6684 5 

6 192.00 1.268 77.143 0.8723 0.7989 0.8071 0.8255 2 

7 293.50 1.726 56.786 0.0000 0.6163 0.7052 0.0000 7 

8 215.25 1.099 49.286 0.7999 0.8489 0.6590 0.7649 4 

9 256.75 2.076 113.400 0.6219 0.2843 0.9426 0.5503 6 

 

Minimum tool-work interface temperature and surface roughness were obtained at v1 – f1 – d1, whereas the 

maximum material removal rate was at v2 – f3 – d3. The levels of machining parameters satisfy the requirement for 

temperature and surface roughness but do not meet for material removal rate. Hence, Taguchi-DFA was 

implemented to optimize the machining parameter, improving the machining performance. Machining responses for 

all experimental design and their corresponding desirability values, followed by composite desirability values, is 

presented in Table 8. 

 
Table 9. Response values for mean composite desirability 

Symbol Machining parameters 
Mean composite Desirability 

Delta Rank 
Level 1 Level 2 Level 3 

v Cutting speed (rpm) 0.2813 0.7585 0.4384 0.4771 3 

f Feed rate (mm/rev) 0.2605 0.7591 0.4586 0.4986 2 

d Depth of cut (mm) 0.5301 0.7253 0.2228 0.5025 1 

 
 

Fig. 11. - Mean composite desirability values for optimum machining parameters 

 

The highest composite desirability was found in experiment 2, with a value of 0.844. The corresponding 

individual desirability values for temperature, surface roughness and material removal rate were obtained as 0.8599, 

0.8921 and 0.7839, respectively. Experiment 2 was considered the optimum machining parameter, enhancing the 

machining performance. Further, it was verified by employing the Taguchi technique. Means of composite 

desirability values were determined for all the experimental runs and presented in Table 9. The effect of the 

machining parameter on mean composite desirability is illustrated in Figure 11. It is clearly seen that the highest 

mean desirability value for cutting speed, feed rate and depth of cut was observed at parameter levels 2, 2 and 2, 

respectively. Hence, the optimum machining parameter for simultaneous optimization of multiple machining 

responses in the current study was obtained as v2 – f2 – d2, i.e., 800 rpm, 0.12 mm/rev and 0.7 mm. 
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Conclusions 

The study experimentally investigated temperature, surface roughness, and material removal rate by varying 

the machining parameters in turning AISI 630 steel in a dry environment. The optimum machining parameter was 

determined using Taguchi-based desirability function analysis to enhance the machining performance. The 

following conclusions are drawn based on the statistical analysis carried out for experimental results: 

 Depth of cut was found as the most influencing parameter on the tool-work interface temperature and 

surface roughness. Depth of cut influenced the temperature and surface roughness with contributions of 61.72% and 

44.08%, respectively. 

 Feed rate was observed as the most influencing parameter on the material removal rate, contributing to 

56.73%. 

 Individual optimum machining parameter for tool-work interface temperature and surface roughness was 

identified as v1 – ƒ1 – d1, whereas v2 – ƒ3 – d3 was noted for material removal rate. 

 Mathematical models were developed for tool-work interface temperature, surface roughness, and material 

removal rate. All models were found to be significant, with the value of R2 as 0.9912, 0.9472, and 0.9758, 

respectively. 

 Taguchi-Desirability Function Analysis confirmed the optimum machining parameter as 800 rpm, 0.12 

mm/rev, and 0.7 mm (v2 – f2 – d2) at a desirability value of 0.844. 
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