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Abstract. The paper studies the stress-strain state of a rod with variable bending rigidity, compressed by an axial 

concentrated force in the presence of initial deflections along its axis. The initial differential equation of longitudinal 

bending is solved by the numerical finite difference method with the number of divisions along the axis equal to 

eight. Two problems are solved simultaneously: bending strength and stability under central compression. The 

calculated deflection diagrams are given depending on the change in the axial load value, taken as a fraction of the 

critical force, as well as depending on the conditions of fixing the ends of the rod. The results of the study are the 

formation of 7th order resolution matrices for the numerical calculation of longitudinal-transverse bending of the 

rod. Critical forces for various boundary conditions at the ends of the rod, and the values of the resulting deflections 

are determined. 
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Introduction 

   The rod elements of various designs of transport systems, mechanisms, mobile transport [6], buildings, 

structures, as well as aircraft and shipbuilding structures have manufacturing and operating defects in the form of 

initial cambers along their longitudinal axes (transverse to the axes of linear deformations). 

        In these cases, the structures (technical systems) under consideration operate under conditions of the complex 

stress state (with flat transverse bending). 

        Load-bearing elements of mechanical engineering structures are in the same conditions, which require strength 

analysis within the limits of long-term operation [1-2]. 

        In the process of their designing, it is necessary to identify the stress-strain state (determining linear and 

angular deformations, displacements, internal axial forces and bending moments in the corresponding bending 

plane) based on the values of which cross sections are selected according to the conditions of strength and rigidity, 

ensuring safe (reliable) operation of the considered systems. 

For example, the study of the stress-strain state, longitudinal vibrations of rods of variable cross-section are 

considered in articles [7, 8, 11, 12]. In addition, impact [9, 10, 13], combined loading, dynamic stability [14, 15] of 

rods under various boundary conditions are often studied. 

The purpose of the article is to study the stress-strain state of a complex rod system with a variable cross-sectional 

thickness along the length in the presence of constructive and acquired during operation " cambers " based on the 

numerical finite difference method taking into account longitudinal transverse bending with the determination of the 

resulting deflections and the value of the critical forces of central compression. 

        Let us consider a rod of variable bending rigidity (variable thickness) compressed by the “P” force, taking into 

account the given initial cambers        along the longitudinal axis with random boundary conditions at its ends 

(Figure 1). Here: y=y(x) is a function of the desired cambers along the longitudinal axis of the rod,          is a 

known function of initial cambers (linear displacements along the “y” axis);        is a variable axial moment of 

inertia of the cross section. 

 
Fig. 1 – Design diagram of the rod under study 
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1. Methods and solutions 

The initial differential equation describing the mechanical operation of the structure under study (Figure 1) 

has the form [1, 2, 5]: 

 

(             )+2E           =P  
     .                                                 (1) 

 

        Both parts of equation (1) are divided by the value     (the conditional (scale) bending rigidity of the rod], and 

the notation is introduced in the form of    
 

   
  

as the axial load parameter. 

        Then, taking into account “K”, instead of equation (1), there is obtained the following equation: 

 
  

   
    

    

   
    

    

   
              

      .                                          (2) 

 

Equation (2) is implemented using the finite difference method (FDM) with a linear grid with a density equal to the 

“n” value; a fragment of such a grid is shown in Figure 2. 

  

 
Fig. 2 – A fragment of a regular “linear grid”  

 

 

Let’s write equation (2) in general form for the i-th grid node (Figure 2), using the FDM parameters known 

from [3÷5], taking this into account: 

       
 

   
                                                                                  (3)  

    is the grid parameter of the axial load. 
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  [                            ]    [              ]     (               )  

       

Then, after reducing similar terms, there is obtained the following: 

  [              ]                     [                 ]                  

  [              ]     (               )                                     (4) 

         Let’s write expression (4) in the reduced form: 

                                  (               )             (5) 

where 

                  ;                 ; 

                      ;                 ;                             (6) 

                   . 
 

        Let's divide the length of a given rod "l" into 8 equal parts (the grid density n=8) and number the calculated 

nodes of the linear grid m=1, 2..., 7 (Figure 1). 

       Let’s write finite-difference equations according to formula (5) for the design nodes, excluding the deflections 

of the contour nodes 8, 9 using the boundary conditions at the ends of the rod, i.e. 

       ;        ,                                                                       (7)    

  

where (   ,   )=+1 with the fixed end of the rod, 

           (   ,   )=-1 with the hinged end. 

1) Node “1” (   ):  
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     [             ]    [                   ]                       [   

          ]       (          )   
or 

  [                            ]                                        
                                                               (8) 

2) Node “2” (   ) 

                    [                   ]                       [   
          ]                          

or 

                                                                         
                               

3) Node “3” (   ) 

  [             ]                      [                   ]   

 

                     [             ]                                          (9) 

or 

                                                                           
                              

                                                                                        (10) 

4) Node “4” (   ) 

  [             ]                      [                   ]                 
     [             ]                         ,  

or 

                                                              

 

                                                                                  (11) 

 

5) Node “5” (   ) 

  [             ]                      [                   ]                 
     [             ]                          , 

or 

                                                              

 

                                                                                         (12) 

6) Node “6” (   ) 

  [             ]                      [                   ]                 
                          , 

or 

                                                              

                                                                            (13) 

7) Node “7” (   ) 

  [      (     )]    (             )    [      (     )       ]      [          

   ]                  , 

or 

  (               )    (            )   

   [                                        ]       (          )                    (14) 

 

Let’s reduce equations (8-14) into a single system of linear algebraic equations (SLAE) of the 7
th

 order 

(Table 1). By changing the initial parameters of a given rod (Figure 1), it is possible to solve various problems 

regarding the strength of compressed rods with different boundary conditions with variable bending rigidity in the 

presence of initial cambers (    ). 

After solving the 7
th

 order SLAE (the rigidity structure is shown in Table 1), their transverse displacements 

(deflections) along the axes of the rods at the calculated grid nodes (Figure 1) are determined:             Based 

on the values of these deflections, the values of bending moments at the i-th grid nodes are determined (according to 

the template in Figure 2): 

 

   
     

    

     
  

  
                                                                (15) 

 

In Table 1, variable alphabetic symbols (Figure 1) mean the following: 
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(           ) is the variability of the structure thickness along the length of the rod in design nodes A, 1, 2, ...7, 

B according to the law of their changing (in particular, it can be accepted according to the law of a square parabola); 

(           ) are the value of the initial losses at nodes 1, 2, …, 7 (considered known before the start of 

calculations); 

      are coefficients for specifying boundary conditions at the ends of the rod (nodes A, B); they are taken equal to 

“+1” when supports “A” or “B” are rigidly fixed; “-1” when they are hinged (Table 1). 

 
Table 1.  Resolving finite-difference equations 

No.                      Right part 
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The calculation using the proposed numerical model is carried out in the form of the following two sequential 

algorithms: 

1. Calculating stability of variable thickness rods without initial cambers (               ) with 

various boundary conditions, under which the parameters of the critical force      are determined; the critical force 

in these cases is determined from formula (3): 

 

           
   

  
 .                                                                          (16) 

 

2. Taking into account the obtained values of “    ”, the calculations are performed for rods of variable 

bending rigidity (thickness) under various boundary conditions (a combination of hinged or rigid supports “A” and 

“B”) in the absence and presence of initial cambers           ;  these calculations examine the strength of 

compressed-bent rods when varying the ratios (P/Pcr) that are specified by the coefficients      varying in the range 

from 0.1 to 0.9 with a step of 0.1, while linear displacements along the axes of the rods are determined (deflections  

          ), the bending moments (according to formula 15). 

Then, based on the data in Table 1, the following results were obtained: 

1) The calculation of a compressed rod for stability: 

a) a rod of variable thickness that changes according to the law of a sinusoid: t=  sin (
  

 
)  with three options 

of boundary conditions (Figure 1): 

 - option “I” - hinges on supports “A” and “B”; 

 - option “II” - rigid sealing on supports “A” and “B”; 

 - option “III” - hinge in support “A”, seal in support “B”; in this case, the thickness coefficients at the grid 

nodes (Figure 1)                                                          
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The results are the values of the critical load parameter “K” (in formula 2) (Table 2). 

 
Table 2.     values depending on the boundary conditions at the variable thickness rod ends 

Option of boundary conditions I II III 

    values (variable thickness rod) 0.078 0.135 0.106 

“   values (constant thickness rod) 0.152 0.586 0.306 

 

According to Table 2, the graphs of changing the critical load parameter “K” are plotted (Figure 3). 

 
Fig. 3 – “К” dependence on the boundary conditions 

 

2. Calculation of compressed rod strength 

 - rod thickness is constant (         =1.0); 

 - the initial losses, specified according to the sinusoid law, change: 

f(x) =   sin (
  

 
) (     cm); 

 - initial load step: 

        (  →according to Table 2; γ=0.1;0.2;0.4;0.6;0.8;0.9 ). 

Table 3 shows the values of deflections      =1, 2, 3, ... 7) for three options of boundary conditions: I, II, 

III (rod of constant thickness). Figure 4 shows the graphical dependences of the deflections       =1.2,...7) in the 

design nodes of rods of constant thickness at γ=0.1;0.2;0.4;0.6;0.8 ;0.9 for three variants of boundary conditions I, 

II, III (according to Table 3). 

 

 

 
 

 
Fig. 4 – Diagrams of deflections of compressed rods of constant thickness in the presence  

of initial deflections for three variants of boundary conditions: 
a) options I, II; b) option III 

 
 
 

 

а) b) 

Options of the boundary 

conditions 

Variable thickness 

Constant thickness 
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Table 3.  Deflection values in the constant thickness rod 
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Conclusions  

1. In this work, a study was carried out of the stress-strain state (SSS) of rods of variable bending stiffness 

(variable thickness along the length of the rod) with various boundary conditions [a combination of hinge and 

pinching at the ends of the rods] in the absence and presence of initial cambers identified in the course of 

manufacturing or operation process. 

2. The resulting calculation method was chosen to be the numerical finite difference method (FDM) using a 

regular linear grid of density n=8; The study is based on a double calculation algorithm: calculations of rods for 

stability in the absence of initial failures; strength calculations in the presence of initial failures of compressed-bent 

rods under the action of axial load (    
⁄ ) in the 0.1; 0.2; …; 0.9 ratios. 

3. In the stability calculation algorithm, the critical force     is determined; strength of linear displacements 

and bending moments at design nodes 1, 2, …, 7 (Figure 1). 

4. A number of research tasks were completed: 

a) stability of compressed rods of constant and variable thickness along their length (Table 2, Figure 3); 

b) strength of compressed rods of constant thickness in the presence of initial cambers varying along the 

length of the rod according to the sinusoidal law with increasing the axial load from 10 to 90% of the value of the 

corresponding critical force (Table 3, Figure 4); 

5. When analyzing the results of the above studies, the following was established: 

a) the value of the critical forces for all three considered options of boundary conditions I, II, III for variable 

thickness rods is smaller than that for the same rods of constant thickness (Figure 3); 

b) deflections in the calculated grid nodes       =1, 2, …, 7)  in the presence of initial cambers, with 

increasing the value of the corresponding load (         ) also increase monotonically; at the same time, for rods 

with hinged supports at the “A” and “B” nodes, option I (Figure 1), the absolute values of deflections are greater 

than for the other options of boundary conditions II, III (Figure 4, a, b). 

6. The theoretical principles and applied results presented in this work can be used in studying the mechanics 

of rod systems, as well as in designing real structures used in various branches of technology. 
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