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Abstract. Gear drives are extremely critical elements of transmission systems. Designing gears that satisfy the 

application's requirements like load carrying capacity and strength whilst also being compact, lightweight, and 

economical is quite a challenging task. In recent times, a lot of research has been dedicated to optimizing speed 

reducers by making use of metaheuristic nature-inspired algorithms. The present work optimizes the weight of a 

spur speed reducer by employing two modified nature-inspired algorithms: Particle Swarm Optimization (PSO) and 

Shuffled Frog Leaping Algorithm (SFLA). Parameter optimization was carried out to select the best combination of 

c1, c2 and 𝜔 for the selected case study. It was found that there was a 1.1619% and 13.41% decrease in the cost 

function evaluation, as compared to the Crude Monte-Carlo and Stray Process methods used in the original case 

study, and around an 11% decrease as compared to results in published literature. 
 

Keywords: gearbox optimization, particle swarm optimization, shuffled frog leaping algorithm, parameter 
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Introduction 

Gears are extremely critical elements in mechanical systems and are typically used for short-distance power 

transmission between elements having different torque and speeds. Gears have been employed in a wide range of 

applications, including automobiles, aircraft, wind turbines, and industrial machines, among others.  Designing gears 

with the least possible amount of volume is critical because it reduces energy consumption and the amount of 

material required to manufacture them [1]. Over the years, there have been great advances in research for achieving 

dimensional optimality while also preventing failure. Further, the ever-growing environmental concerns have led to 

the need for high efficiency of the designed product. As a result, design optimization is often regarded as the most 

crucial step in the design and development of a new gearbox [2]. 

Nature-inspired optimization techniques were introduced over half a century ago and have hence been used 

to optimize engineering problems using the myriad of algorithms developed. The most implemented algorithms for 

design problems include Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), 

and their variants [3]. In this paper, gear data from a previously investigated case of a spur reducer proposed by Dr 

Jan Golinski was considered [4]. The Golinski speed reducer problem is also a part of the NASA Langley 

Multidisciplinary Design Optimization (MDO) Test Suite [5]. Over the years, this case study has been extensively 

attempted using various optimization algorithms, both deterministic and metaheuristic. Modified versions of the 

PSO and SFLA algorithms were implemented on the reduced set of equations provided by [6]. The results obtained 

were then compared with those presented in previously published works.  

 

2 Materials and Methods 

 

2.1 Modified Particle Swarm Optimization Algorithm 

The particle swarm optimization algorithm, a meta heuristic algorithm for optimising non-linear continuous 

functions [7]. It is based on the social behavior of swarm animals like birds and fish and depends on factors such as 

avoiding predators, seeking food, and environmental parameters like temperature, etc. The collective knowledge 

gathered and shared by the swarm members is known as social knowledge which is an integral part of the practice 

followed by these swarms to ensure their survival. The end goal is to find a spot that will maximise their survival 

advantage along with the food they are seeking. To achieve this, each member explores and judges using several 

criteria.  

The PSO algorithm simulates this swarm behaviour, wherein the position and velocity vectors are given by 

Xi and Vi respectively, and n is the total number of variables in the problem. Soon after PSO was introduced, [8] 

proposed a modified version with a new parameter called inertia weight (𝜔), which greatly improved its 

performance by balancing out the local and global search of the algorithm. A larger 𝜔 tends to improve the global 

search, while a smaller 𝜔 tends to improve the local search. This modified PSO (with the inertia weight included) is 

considered as the canonical PSO. This was further modified to include limits for the minimum (Min V) and 

maximum (Max V) velocity [9]. 

Initially, the population is randomly generated within the specified ranges for each variable and 𝑉𝑖 is set to 0. 

Then the cost function f(X) is calculated, and the initial positions of the population is set as the personal best for each 

particle. The position with the least f(X) value is set as the global best. Then the maximum and minimum allowed 
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velocity limits are calculated using equations (1) and (2) and the velocity limits are applied as per equations (3) and 

(4): 

 

𝑀𝑎𝑥 𝑉  = 0.2(𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛)                                                         (1) 

 

𝑀𝑖𝑛 𝑉 = −𝑀𝑎𝑥 𝑉                                                                       (2) 

 

𝑉𝑖 = max(𝑉𝑖 ,  𝑀𝑖𝑛 𝑉)                                                                     (3) 

 

𝑉𝑖 = min(𝑉𝑖 ,  𝑀𝑎𝑥 𝑉)                                                                    (4) 

 

Then the algorithm proceeds by generating the new set of positions for the particles. For this, the velocity of 

the particle is calculated using equation (5) and is constrained as per equations (6) and (7): 

 
𝑉𝑖+1 = 𝜔𝑉𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑋𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡,𝑖 − 𝑋𝑖)                                                (5) 

 

𝑋𝑖 = max(𝑋𝑖 ,  𝑉𝑎𝑟𝑀𝑖𝑛)                                                                   (6) 

𝑋𝑖 = max(𝑋𝑖 ,  𝑉𝑎𝑟𝑀𝑎𝑥)                                                                   (7) 

 
Where, 𝑝𝑏𝑒𝑠𝑡,𝑖 = best personal particle position, 𝑔𝑏𝑒𝑠𝑡,𝑖 = global best particle position, 𝑐1 and 𝑐2 = 

acceleration constants used to regulate the cognitive and social elements respectively, 𝑟1 and 𝑟2 = randomly 

generated numbers between 0 and 1 (to avoid early convergence). 

The first term in equation (5) represents the particle's preceding velocity, the second term is the difference 

between the particle's own best position (cognitive term), and the third term oversees the process of sharing 

knowledge between particles (social term). This ensures that the best position is found regardless of which particle 

finds it. Then the new positions for the population are determined using equation (8) and the cost function is 

evaluated: 

 

𝑋𝑖=1 = 𝑋𝑖 + 𝑉𝑖+1                                                                            (8) 

 

For any given particle, if the cost function evaluation for the new position is better than the previous one, the 

personal best is updated and set to the new position. Similarly, if the new cost function evaluation is better than the 

global best, this particle position is set as the new global best position. This procedure is repeated till the 

convergence criteria is met. The flowchart of the modified PSO algorithm used in this paper is shown in Figure 1. 
 

2.2 Modified Shuffled Frog Leaping Algorithm 

The Shuffled Frog Leaping Algorithm (SFLA) is a memetic metaheuristic method that seeks the global 

optimum of an optimization problem [10]. It is based on the concept of frogs leaping across stones in a swamp, 

wherein the frogs represent the population, which in turn represents feasible solutions to the optimization problem. 

The stones are at discrete locations in the swamp and have varying amounts of food on them. The frogs try to locate 

the stone that has the largest amount of food available as quickly as possible. They do this by improving their 

memes, which correspond to their coordinate position, and can only be altered by discrete values. The population is 

further subdivided into subsets called memeplexes, within which the frogs share information with each another and 

improve their memes. Based on this, the frog's leaping step size is adjusted, thus changing their positions. SFLA 

combines the local search methodology of PSO and the competitive nature and mixed information methodology of 

the Shuffled Complex Evolution (SCE) algorithm.  

Initially the frog population Xi is randomly generated containing n number of frogs. Then the cost function is 

evaluated and the frogs in the population are arranged in descending order of the results obtained. Next, the 

population is divided into m number of memeplexes. The first frog will be sorted into the 1st memeplex, the second 

frog in the 2nd memeplex, …., the mth frog to the mth memeplex, the (m+1)th frog to the 1st memeplex, and so on. 

Then the worst (Xw) and best (Xb) frogs within each memeplex, and the global best frog (Xg) from the entire 

population are identified.  

To avoid early convergence at a local optimum, [11] suggested the use of a parameter called the ‘search 

acceleration factor’, denoted by c, which is used in the modified SFLA algorithm. At the beginning of the search, a 

larger c value would accelerate the global search, thus widening the search space. Once a probable optimal location 

is identified, c would focus on an in-depth local search. Hence, c balances the local and global search of the 

algorithm. [12] suggested the use of an inertia factor 𝜔, similar to the inertia factor in PSO. The inertia factor in 

SFLA would help avoid premature convergence and widen the search space.  
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Fig. 1.  - Flowchart for modified PSO algorithm 

 

Now, the local search step is initiated using equation (9), by which the new position (Xi+1) of the frog is 

calculated. Every new frog generated is subject to the position range conformance criteria mentioned in equation 

(11) [13]. If this condition is satisfied, the cost function is evaluated, and if the evaluation is better, the new frog 

replaces the worst one. If not, the local search evaluation is skipped and the global search step is initiated using 

equation (10), by which the new position (Xi+1) is generated. Once again, the condition in equation (11) is checked. 

If satisfied, the cost function is evaluated, and if the evaluation is better, the new frog replaces the worst one. If 

equation (11) is not satisfied again, the global search step is skipped, and the frog is generated randomly. 

 

𝑋𝑖+1 = 𝜔𝑋𝑖 + 𝑐1𝑟(𝑋𝑏 − 𝑋𝑤)                                                                  (9) 

 

𝑋𝑖+1 = 𝜔𝑋𝑖 + 𝑐2𝑟(𝑋𝑔 − 𝑋𝑤)                                                                 (10) 

 

𝑎𝑙𝑙(𝑥 ≥ 𝑉𝑎𝑟𝑀𝑖𝑛)     AND     𝑎𝑙𝑙(𝑥 ≤ 𝑉𝑎𝑟𝑀𝑎𝑥)                                                   (11) 

 

Where, 𝑋𝑖+1 = new position, 𝑋𝑖 = previous frog position, 𝑟 = randomly generated number between 0 and 1. 

This conditional procedure reduces the number of unnecessary cost function evaluations, thus speeding up 

the algorithm. The local / global search steps are repeated a set number of times, following which, the memeplexes 

are shuffled for meme (information) exchange at the global level. This sequence is repeated till convergence is 

achieved. An overview of the Modified SFLA algorithm is given in Figure 2. 
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Fig. 2 - Flowchart for modified SFLA algorithm 

 

3. Theory and Calculation 

 

3.1 Benchmarking and Validation 

The code for PSO and SFLA was validated using 15 benchmark functions (refer to the Supplementary 

Materials for the 3D plots), which included both unimodal (functions 7, 1, and 2) and multimodal (functions 6, 9, 

and 12), functions with many local optima (functions 1, 7-9, 11, 13-14) and many global optima (functions 13 and 

15). Each benchmark function was run 30 times, with 1000 iterations each. The total population size for both 

algorithms was 50 (5 memeplexes with 10 frogs per memeplex for SFLA). 

The statistical results for the benchmark functions are given in Table 1. The main focus of this analysis was 

on the mean and standard deviation of the cost function evaluations since they are indicative of the repeatable 

optimality of the algorithms. This is especially important because the populations generated for each run of the 

algorithm differ.  

From Table 1, we can see that in general, the mean results obtained using SFLA were better than those 

obtained through PSO. The exceptions to this observation were functions 11 (5d and 10d), 12, and 14, where the 

PSO results were better, and function 13, where the mean was the same. Consequently, the general trend observed 
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for standard deviation was that it was lower for SFLA as compared to PSO. The average number of convergence 

iterations for SFLA were lesser compared to PSO, except for functions 1, 2 and 5. Conversely, the average run time 

(for 1000 iterations) for SFLA is higher.  

 
Table 1 - Results of benchmark functions 

N. Function Rang

e 

d PSO | 𝜔 = 0.65, c1 = 1.65, c2 = 1.75 SFLA | 𝜔 = 1, c1 = c2 = 2 

Avg RT Avg 

CI 

Mean Std. Dev. Avg RT Avg 

CI 

Mean Std. Dev. 

1 Sphere [-100, 

100] 

30 1.1457 999 3.8051E-17 6.7902E-17 8.7681 1000 3.4576E-71 7.4977E-71 

[-10, 

10] 

1.1803 999 3.8051E-19 6.7902E-19 7.9281 1000 2.4754E-71 7.6592E-71 

[-5.12, 

5.12] 

1.2557 999 9.9749E-20 1.7800E-19 8.1669 1000 4.4202E-71 2.3782E-70 

2 Sum 

Square 

[-100, 

100] 

30 0.9550 990 3.3333E+02 1.8257E+03 5.9185 1000 1.1498E-65 6.2831E-65 

[-10, 

10] 

0.7007 990 3.3333E+00 1.8257E+01 6.1128 1000 1.0022E-70 3.7445E-70 

[-5.12, 

5.12] 

1.1036 990 8.7381E-01 4.7861E+00 6.0267 1000 1.2627E-69 6.8912E-69 

3 Matyas [-10, 

10] 

2 0.6696 996 1.4622E-97 7.3964E-97 5.6252 996 1.5040E-311 0.0000E+00 

4 Booth [-10, 

10] 

2 0.6571 261 0.0000E+00 0.0000E+00 6.3799 52 0.0000E+00 0.0000E+00 

5 Zakharov [-5, 

10] 

10 0.6560 998 2.4123E-32 5.3329E-32 5.8687 1000 3.7042E-98 1.9266E-97 

30 0.6969 996 1.5002E+01 3.1180E+01 6.1667 1000 3.3074E-06 1.5700E-05 

6 Beale [-4.5, 

4.5] 

2 0.6428 312 5.0805E-02 1.9334E-01 6.4111 86 9.2445E-34 5.0634E-33 

7 Easom [-100, 

100] 

2 0.6225 137 -1.0000E+00 0.0000E+00 6.6426 21 -1.0000E+00 0.0000E+00 

8 Eggholder [-512, 

512] 

2 0.6371 223 -8.3256E+02 1.0610E+02 6.2042 138 -8.8937E+02 7.5537E+01 

9 Michale-

wicz 

[0, pi] 2 0.6618 159 -1.8013E+00 9.0336E-16 6.3598 38 -1.8013E+00 9.0336E-16 

5 0.7071 343 -4.5584E+00 1.9100E-01 6.2610 221 -4.4645E+00 1.9075E-01 

10 1.0580 546 -8.8041E+00 5.1623E-01 9.3777 367 -8.6069E+00 5.5608E-01 

10 Dixon-

Price 

[-10, 

10] 

4 1.0869 396 3.6978E-32 0.0000E+00 8.4646 133 1.1710E-31 1.4504E-31 

10 1.0375 451 6.0000E-01 2.0342E-01 8.5383 265 4.2222E-01 3.2676E-01 

30 0.7108 983 6.6667E-01 3.7383E-05 6.5714 611 6.6667E-01 3.8246E-13 

11 Ackley [-

32.76

8, 

32.76

8] 

2 0.5017 255 8.8818E-16 0.0000E+00 5.8666 36 8.8818E-16 0.0000E+00 

5 0.4981 507 1.9540E-15 1.6559E-15 5.8998 141 2.0724E-15 1.7034E-15 

10 0.5163 561 4.6777E-15 9.0135E-16 5.8978 159 4.8490E-01 6.7197E-01 

12 Drop-

Wave 

[-5.12, 

5.12] 

2 0.4952 143 -1.0000E+00 0.0000E+00 5.9452 82 -9.8725E-01 2.5938E-02 

13 Shubert [-10, 

10] 

2 0.5047 250 -1.8673E+02 4.4157E-14 5.7148 228 -1.8673E+02 3.2534E-14 

[-5.12, 

5.12] 

0.5031 149 -1.8673E+02 2.4755E-14 5.7619 29 -1.8673E+02 2.4755E-14 

14 Griewank [-600, 

600] 

2 0.5010 327 2.4653E-04 1.3503E-03 9.2549 144 6.2457E-03 5.5594E-03 

5 0.5110 617 2.0609E-02 1.2647E-02 7.5310 269 1.2376E-01 8.2825E-02 

10 0.5272 700 7.0055E-02 3.9644E-02 5.8209 273 8.9725E-02 6.1086E-02 

15 Cross-in-

Tray 

[-10, 

10] 

2 0.5025 127 -2.0626E+00 9.0336E-16 5.7631 20 -2.0626E+00 9.0336E-16 

 

Out of the 15 benchmark functions evaluated, it is evident that 1000 iterations were insufficient to achieve 

complete convergence for functions 1, 2, 3, and 5. This was the case even after the search space was reduced. 

Nonetheless, the solutions obtained for these functions were within desirable limits, but there was scope for further 

improvement if the number of iterations were increased. The only outlier to this observation is the results obtained 

for function 2 using PSO, even with reduced search space. Apart from this, the results obtained for function 14 (both 

algorithms) and 6 (using PSO) could have been better. On the other hand, both algorithms were unable to achieve 
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optimality for functions 8 and 9 (10d). Based on the promising results obtained for the benchmark functions, the 

algorithms were used to attempt the case study. 

 

3.2 Case Study 

Figure 3 provides a diagrammatic representation of the speed reducer case study attempted. The original 

constraints, objective function, and assumptions by [4] can be found in the Supplementary Materials. These 

equations were simplified and re-written as listed below by [6] and were used in this case study.  

 

 
Fig. 3 - Schematic of the Golinski speed reducer [6] 

 
Objective Function: 

𝑓(𝑥1, . . ,  𝑥7)  =  (0.7854 × 3.3333)𝑥1𝑥2
2𝑥3

2 + (0.7854 × 43.0934)𝑥1𝑥2
2𝑥3 − 1.508𝑥1𝑥6

2 

−1.508𝑥1𝑥7
2 + 7.4777𝑥6

2 − 7.4777𝑥7
2 + 0.7854𝑥4𝑥6

2 + 0.7854𝑥5𝑥7
2 

 

Constraints: 

𝑔1 = 27𝑥1
−1𝑥2

−2𝑥3
−1 − 1 ≤ 0, 

𝑔2 = 397.5𝑥1
−1𝑥2

−2𝑥3
−2 − 1 ≤ 0, 

𝑔3 = 1.93𝑥4
3𝑥2

−1𝑥3
−1𝑥6

−4 − 1 ≤ 0, 

𝑔4 = 1.93𝑥5
3𝑥2

−1𝑥3
−1𝑥7

−4 − 1 ≤ 0, 

𝑔5 = 7452𝑥4
2𝑥2

−2𝑥3
−2 − 1002𝑥6

6 + (16.9 × 106)  ≤ 0, 

𝑔6 = 7452𝑥5
2𝑥2

−2𝑥3
−2 − 852𝑥7

6 + (157.5 × 106)  ≤ 0, 

𝑔7 = 𝑥2𝑥3 − 40 ≤ 0, 

𝑔8 = 5𝑥2 − 𝑥1 ≤ 0, 

𝑔9 = 𝑥1 − 12𝑥2 ≤ 0, 

𝑔10 = 1.5𝑥6 − 𝑥4 + 1.9 ≤ 0, 

𝑔11 = 1.1𝑥7 − 𝑥5 + 1.9 ≤ 0, 

 

2.6 ≤ 𝑥1 ≤ 3.6, 

0.7 ≤ 𝑥2 ≤ 0.8, 

1.7 ≤ 𝑥3 ≤ 28, 

7.3 ≤ 𝑥4 ≤ 8.3, 

7.3 ≤ 𝑥5 ≤ 8.3, 

2.9 ≤ 𝑥6 ≤ 3.9, 

5 ≤ 𝑥7 ≤ 5.5 

 

Where x1 = face width, x2 = module, x3 = number of pinion teeth, x4 = length of the first shaft between 

bearings, x5 = length of the second shaft between bearings, x6 = diameter of the first shaft, x7 = diameter of the 

second shaft. 

The penalty approach employed by [14] was used to deal with the constraints of this optimization problem. 

The following are the steps involved: 

- the cost function and constraints are evaluated for the set of variables obtained by the algorithm; 

- if a constraint is violated, the penalty for that constraint is set to the value obtained on evaluating that 

constraint equation; else the penalty is set to zero. For example, if the evaluation of constraint g8 is equal to 9, the 

constraint would be violated, and hence, the penalty for g8 would be set to 9; 

- after all the constraints are evaluated, the penalty for each constraint (if any) is added up and multiplied by a 

penalty factor Rm, which is chosen on a case-to-case basis. The basic purpose is to prevent the algorithm from 
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converging too early. In cases where the constraint violation is miniscule, larger penalty factors are picked, and vice 

versa; 

- lastly, the product of total penalty and Rm are added to the cost function of that evaluation as shown in 

equation (12): 

 

𝑧 = 𝑓(𝑥)  +  (𝑅𝑚 × ∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 
  )                                                (12) 

 

The value of z was used as the cost function value for each evaluation of the objective function. In this way, 

every time the set of variables violated a constraint, the possibility of that evaluation being the global optimum was 

reduced, hence ensuring that the global optimum parameter combinations obtained had little to no constraint 

violation. 

 

4. Results and discussion 

 

4.1 Parameter Optimization 

For benchmarking and validation of the code, certain standard values were used for the c1, c2, and 𝜔 

parameters of the modified PSO and SFLA algorithms. Due to the affect c1, c2, and 𝜔 have on the progression of the 

algorithm, different combinations of these parameters work well for different search spaces [15, 16]. 
 

Table 2. Effect of number of memeplexes and frogs per memeplex on convergence 

No. n m m × n Min Cost Max Cost Mean Cost Std Dev Avg RT Avg CI 

1 10 2 20 2886.2279 2898.6941 2889.1941 3.9741E+00 3.1562 575 

10 3 30 2886.2279 2891.2402 2886.6852 1.1414E+00 4.4641 743 

10 4 40 2886.2279 2890.5270 2886.5325 9.8403E-01 5.7683 782 

10 5 50 2886.2279 2886.2628 2886.2291 6.3689E-03 7.0996 833 

10 6 60 2886.2279 2886.2280 2886.2279 2.2190E-05 11.9682 799 

10 7 70 2886.2279 2886.2279 2886.2279 7.0253E-10 12.5813 778 

10 8 80 2886.2279 2886.2279 2886.2279 3.6808E-12 14.9407 816 

10 9 90 2886.2279 2886.2279 2886.2279 4.4197E-11 12.6021 847 

10 10 100 2886.2279 2886.2279 2886.2279 4.0868E-11 13.8452 834 

2 5 4 20 2886.2279 2886.3430 2886.2348 2.3653E-02 5.4799 309 

5 6 30 2886.2279 2886.2318 2886.2280 7.2008E-04 8.1512 314 

5 8 40 2886.2279 2886.2279 2886.2279 2.6503E-12 15.0238 321 

5 10 50 2886.2279 2886.2279 2886.2279 1.1852E-12 16.3917 327 

5 12 60 2886.2279 2886.2279 2886.2279 1.3978E-12 16.6759 344 

5 14 70 2886.2279 2886.2279 2886.2279 3.3778E-13 19.0712 345 

5 16 80 2886.2279 2886.2279 2886.2279 8.3596E-13 22.2465 350 

5 18 90 2886.2279 2886.2279 2886.2279 1.8882E-13 23.8131 364 

5 20 100 2886.2279 2886.2279 2886.2279 1.1942E-13 26.1906 367 

Note: n = number of frogs per memeplex, m = number of memeplexes. 
 

Hence, an experiment was carried out to understand the relation between number of memeplexes, frogs per 

memeplex, and convergence for the SFLA algorithm. These results are presented in Table 2 for a parameter 

combination of 𝜔 = 1, and c1 = c2 = 2. The results highlighted that the standard deviation of the cost function 

evaluations for each set of 30 runs in SFLA reduced with increasing total population size (Table 2). The average run 

time and number of iterations to achieve converge for 1000 iterations also increased with the increase in total 

population. Another important observation was that the standard deviation reduced when the number of memeplexes 

were increased (for the same total population size). The average run time increased as the total population increased, 

but the time taken for the experimental set with increased number of memeplexes was higher as compared to the 

ones with lesser number of memeplexes (for the same total population). One interesting observation was that, 

although the average number of iterations to achieve convergence was increased as the total population increased, 

the number of iterations required were far lesser than the number required with lesser memeplexes. 

From Table 2, it can be noted that the optimal solution is around 2886 (including penalty). An experiment 

was carried out to select the best combination of parameters for both, PSO as well as SFLA, within the defined 

ranges for c1, c2, and 𝜔. Since the value of c1 and c2 should lie between 0 and 2, and w, 0 to 1, this was done with 

increments of 0.5. The total number of combinations were 75. This experiment was also repeated for different total 

population sizes to check the effect of population size on the optimal solutions obtained. For SFLA, as per the 
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results obtained in Table 2, the number of memeplexes was increased (with 10 frogs per memeplex). The complete 

result table for this experiment is given in the Supplementary Materials. Based on the results obtained, suitable 

combinations of parameters were selected for the modified PSO and SFLA algorithms. 

It was observed that whenever any of the three parameters in the combination was set to zero for PSO, the 

minimum, maximum, and mean value of the cost function evaluations obtained were higher, as compared to 

combinations that were non-zero. This observation can be visualized from the sharp peaks in Figure 4 (a). A very 

similar trend can be seen for the standard deviation in Figure 4 (b). From Figure 4 (a) and (b), it is evident that the 

values of 𝜔, c1, and c2 increase from 0, the number of iterations required for the solution to converge is higher. It 

was observed that as a general trend, as the values for the 3 parameters increases, the average CI required also 

increases. The elimination method was used to decide the best combination of parameters for modified PSO to solve 

this case study. This combination was: 𝜔 = 0.5, c1 = 1.5 and c2 = 1.5, for a population size of 30. 

 

  
Fig. 4 - Effect of 𝜔, c1, c2 on (a) Mean Cost, (b) Standard Deviation for Modified PSO 

Note: The values on the x-axis represent the serial number for the parameter combination. Further information can be obtained in the 
Supplementary Materials. 

 
Analysis of the results for SFLA indicate that for every combination where 𝜔 < 1, there was negligible 

change in the cost function evaluations, standard deviation, average run time, and number of convergence equations 

required (supplementary materials). For combinations with 𝜔 = 1, there is a trend similar to the one observed for 

PSO, except that the rise in the mean cost function value is more gradual, unlike the sharp peaks observed for PSO 

(Figure 5 (a)). This trend continues for 3 cycles and then converges once 𝑐1 ≥ 1.5. It can be noted that, the smaller 

the total population size, the greater is the cost function evaluation, for the same set of parameters (Figure 5, (a) and 

(b)). As was the case for modified PSO, the elimination method was used to identify the best combination of 

parameters for modified SFLA for this case study: 𝜔 = 1, c1 = 2 and c2 = 0.5, for a population size of 150 (15 

memeplexes with 10 frogs each). 

 

  
Fig. 5 - Effect of 𝜔, c1, c2 on (a) Mean Cost, (b) Standard Deviation for Modified SFLA 

Note: The values on the x-axis represent the serial number for the parameter combination. Further information can be obtained in the 
Supplementary Materials. 

 

4.2 Comparison of Results with Previous Literature 

The results of the case study using the modified PSO and SFLA algorithms were the same - 2886.2279 (with 

penalty) and 2640.9739 (without penalty). The total penalty was 1.2292 for PSO and 1.2263 for SFLA, for a penalty 

factor (rm) of 200.   

Table 3 gives us a broad comparison of the different reported optimal solutions for the Golinski speed 

reducer problem obtained by researchers over the years [6,17–26]. The OF and constraint equation values were re-

calculated for each of the previous results (Table 4). As is clearly visible in Table 3, the results obtained using the 

modified PSO and SFLA algorithms (the OF value with the penalty added, i.e., 2886.2279) is one of the best 

solutions.  
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Table 3. Comparison of case study variables and OF (with penalty) with previous literature 

No Authors Algorithm Variables OF (with 

penalty, if 

any) 

1 K'uang J. Ku et 

al. 

Taguchi method x1 = 3.6,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.8,             x6 = 3.4,             x7 = 5.0 

2876.2200 

2 Akhtar et al. Socio-Behavioural 

Simulation Model 

x1 = 3.506122,   x2 = 0.700006,   x3 = 17,   x4 = 7.549126, 

x5 = 7.859330,   x6 = 3.365576,   x7 = 5.289773 

3008.1974 

3 Rao and Xiong Mixed Discrete 

Hybrid Genetic 

Algorithm (MDHGA) 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.8,             x6 = 3.36,           x7 = 5.29 

3000.8300 

4 Leticia C. 

Cagnina et al. 

Simple Constrained 

Particle Swarm 

optimizer (SiC-PSO) 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.8,             x6 = 3.350214,   x7 = 5.286683 

2996.3482 

5a Jaberipour and 

Khorram 

Proposed Harmony 

Search Algorithm 

(PHS) 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.71533233833903,              x6 = 3.35021510925684,      

x7 = 5.28666403545462 

2994.4775 

5b Improving Proposed 

Algorithm Harmony 

Search (IPHS) 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.71599501113801,              x6 = 3.35025375091328,      

x7 = 5.28690759750734 

2994.9000 

6 Li and 

Papalabros 

Production System for 

Global Knowledge 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.71,           x6 = 3.35,           x7 = 5.29 

2994.4000 

7 Tosserams et 

al. 

Augmented 

Lagrangian 

Decomposition 

Method 

x1 = 3.5,             x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.72,           x6 = 3.35,           x7 = 5.29 

2996.6458 

8 Lu & Kim Regularized Inexact 

Penalty 

Decomposition 

Algorithm 

x1 = 3.5,            x2 = 0.7,             x3 = 17,    x4 = 7.3, 

x5 = 7.670396,  x6 = 3.542421,   x7 = 5.245814 

3019.5834 

9 Huang C Geometric 

Programming (GP) 

x1 = 3.495652,  x2 = 0.7000002, x3 = 17,   x4 = 7.30000007, 

x5 = 7.7120386,  x6 = 3.343372,  x7 = 5.285352 

2990.1244 

10 Lin M. et al. Convexification 

strategies and 

piecewise 

linearization methods 

x1 = 3.5,            x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.715319,  x6 = 3.350282,   x7 = 5.286654 

2994.4719 

11a Golinski 

(Original case 

study) 

Crude Monte-Carlo x1 = 4.4,            x2 = 0.6,             x3 = 17,   x4 = 7.3, 

x5 = 8.1,            x6 = 3.4,             x7 = 5 

2236.3500 

11b Stray Process x1 = 3.6,            x2 = 0.7,             x3 = 18,   x4 = 6.6, 

x5 = 8.2,            x6 = 2.8,             x7 = 5.2 

2247.7900 

A1 Our solutions Modified PSO x1 = 2.6,            x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.715319911,   x6 = 3.350214666,   x7 = 5.286654465 

2886.2279 

A2 Modified SFLA x1 = 2.6,            x2 = 0.7,             x3 = 17,   x4 = 7.3, 

x5 = 7.715319911,    x6 = 3.350214666,    x7 = 5.286654465 

2886.2279 

Note: OF represents the evaluation of the Objective Function – (with penalty values added for No. A1 and A2). x1 to x7 represent the values for 
each of the 7 variables. 

 

The only two solutions with comparable results were those obtained using the Taguchi Method by [17] and 

the Crude Monte-Carlo and Stray Process algorithms by [4]. However, on closer observation, it is obvious from 

Table 4 that the constraint violations for these algorithms are far greater than the violations using the modified PSO 

and SFLA algorithms in the present work. Also, from Table 4, it is evident that the cost function value presented by 

[4] does not match the results presented in their paper. Based on these observations, the values obtained in the 

present work using modified PSO and SFLA as relatively more optimal.  

 
Table 4. Comparison of results of re-calculated OF and constraint equations (values obtained from previous literature) 

No f(x) Constraints 

1 2876.219475 g(1) = -0.09964,            g(2) = -0.220276,        g(3) = -0.527868,          g(4) = -0.876856, 

g(5) = -1.5833E+06,     g(6) = 4.4848E+07,     g(7) = -28.1,                  g(8) = -0.1, 

g(9) = -4.8,                    g(10) = -0.3,                g(11) = -4.0000E-01 

2 3008.19744 g(1) = -0.075548,          g(2) = -0.199413,        g(3) = -0.456175,          g(4) = -0.899442, 

g(5) = -4.6162E+05,     g(6) = -5.5031E+05,    g(7) = -28.099898,        g(8) = -0.006092, 

g(9) = -4.89395,            g(10) = -0.600762,      g(11) = -1.4058E-01 

3 3000.959715 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.504981,          g(4) = -0.901719, 

g(5) = -3.0203E+05,     g(6) = -5.9471+05,      g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.36,              g(11) = -8.1000E-02 

4 2996.347849 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499172,          g(4) = -0.901472, 

g(5) = 2.0410E+01,      g(6) = 4.1132E+01,     g(7) = -28.1,                  g(8) = 0, 
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g(9) = -4.9,                    g(10) = -0.374679,      g(11) = -8.4649E-02 

5a 2994.477531 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499173,          g(4) = -0.904644, 

g(5) = -1.3579E+01,     g(6) = -1.7125E+03,    g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.374677,      g(11) = -1.8993E-06 

5b 2994.656655 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499196,          g(4) = -0.904637, 

g(5) = -1.1976E+03,     g(6) = -4.5280E+04,    g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.374619,      g(11) = -3.9665E-04 

6 2996.425995 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499044,          g(4) = -0.905082, 

g(5) = 6.5765E+03,       g(6) = -6.0018E+05,   g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.375,            g(11) = 9.0000E-03 

7 2996.645783 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499044,          g(4) = -0.904712, 

g(5) = 6.5765E+03,       g(6) = -5.9959E+05,   g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.375,            g(11) = -1.0000E-03 

8 3019.583344 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.599338,          g(4) = -0.903348, 

g(5) = -6.8015E+06,     g(6) = 7.1687E+06,     g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.086369,      g(11) = -6.0000E-07 

9 2990.124384 g(1) = -0.072764,          g(2) = -0.197001,        g(3) = -0.49506,            g(4) = -0.904672, 

g(5) = 2.0860E+05,      g(6) = 2.3282E+05,     g(7) = -28.099997,        g(8) = 0.004349, 

g(9) = -4.90435,            g(10) = -0.384842,      g(11) = 1.8486E-03 

10 2994.48791 g(1) = -0.073915,          g(2) = -0.197999,        g(3) = -0.499213,          g(4) = -0.904644, 

g(5) = -2.0633E+03,     g(6) = 8.3184E+01,     g(7) = -28.1,                  g(8) = 0, 

g(9) = -4.9,                    g(10) = -0.374577,      g(11) = 4.0000E-07 

11a 2672.019394 g(1) = 0.002674,           g(2) = -0.131671,        g(3) = -0.44918,            g(4) = -0.839109, 

g(5) = -1.5078E+06,     g(6) = 4.4959E+07,     g(7) = -29.8,                 g(8) = -1.4, 

g(9) = -2.8,                    g(10) = -0.3,                g(11) = -7.0000E-01 

11b 3049.97544 g(1) = -0.14966,            g(2) = -0.304506,        g(3) = -0.283549,          g(4) = -0.884491, 

g(5) = 1.1221E+07,      g(6) = 1.4892E+07,     g(7) = -27.4,                  g(8) = -0.1, 

g(9) = -4.8,                    g(10) = -0.5,                g(11) = -5.8000E-01 

A1 2640.97393 g(1) = 0.246653,           g(2) = 0.0796174,        g(3) = -0.499172,          g(4) = -0.904644, 

g(5) = -7.0781E-08,      g(6) = 2.9802E-07,      g(7) = -28.1,                  g(8) = 0.9, 

g(9) = -5.8,                    g(10) = -0.374678,      g(11) = -7.5495E-15 

A2 2640.97393 g(1) = 0.246653,           g(2) = 0.0796174,        g(3) = -0.499172,          g(4) = -0.904644, 

g(5) = -7.0781E-08,      g(6) = 2.9802E-07,      g(7) = -28.1,                  g(8) = 0.9, 

g(9) = -5.8,                    g(10) = -0.374678,      g(11) = -7.5495E-15 

Note: f(x) is the evaluation of the OF (Objective Function) – without penalty values added for No. A1 and A2. g(1) to g(11) represents the 
evaluation of the 11 constraints. The cells highlighted in bold text represent the constraints that were violated. 

 
The percentage difference in the results obtained using modified PSO and SFLA (without penalty) in 

comparison with previous results is shown in Table 5.  
 

Table 5. Percentage improvement in results 
No. Author(s) OF (without penalty) % Improvement 
1 K’uang J. Ku et al. 2876.2200 8.1790% 

2 Akhtar et al. 3008.1974 12.2074% 

3 Rao and Xiong 3000.8300 11.9919% 

4 Leticia C. Cagnina et al. 2996.3482 11.8602% 

5a Jaberipour and Khorram 2994.4775 11.8052% 

5b 2994.9000 11.8176% 

6 Li and Papalabros 2994.4000 11.8029% 

7 Tosserams et al. 2996.6458 11.8690% 

8 Lu and Kim 3019.5834 12.5385% 

9 Huang 2990.1244 11.6768% 

10 Lin et al. (2012) 2994.3410 11.8012% 

11 Lin et al. (2013) 2994.4719 11.8050% 

12a Dr Jan Golinski (Original case study) 2236.3500 -18.0931% 

12b 2247.7900 -17.4920% 

12a* 2672.0194 1.1619% 

12b* 3049.9754 13.4100% 

A1 Modified PSO 2640.9739 

A2 Modified SFLA 2640.9739 

Note: * indicates the actual OF values obtained after re-calculating results 
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The results of this project indicate that there is a negative difference in the cost function value (18.0931%) as 

compared to the result obtained by [4] using the Crude Monte-Carlo algorithm, and a 17.4920% difference in 

comparison with the Stray Process result. But as mentioned earlier, the values of the OF evaluations presented by 

Golinski do not match the re-calculated values. Based on these re-calculated values, the percentage difference 

between Golinski’s results and the results obtained in this project is 1.1619% and 13.41% for both algorithms 

respectively. Apart from the results presented by Golinski, the smallest percentage improvement is 8.1790%, in 

comparison with the Taguchi method suggested by [17]. A total of 4 constraints (constraints 1, 2, 6, and 8) were 

violated by the combination of parameters obtained using the modified PSO and SFLA algorithms. Since the 

violation in the constraints are negligible, the design of the speed reducer can be considered satisfactory:  

- constraint 1 (Bending condition) violation: 0.246653; 

- constraint 2 (Compressive stress limitation) violation: 0.079617;  

- constraint 6 (Stress condition for shaft 2) violation: 0.00000029802; 

- constraint 8 (Relative face width condition) violation: 0.9. 

 

Conclusions 

Modified PSO and SFLA are both powerful nature-inspired algorithms that can obtain optimal results for a 

variety of benchmark functions (unimodal, multimodal, multiple local and global optima). However, it is important 

to note that different parameter combinations work better for different optimization problems with different search 

spaces.   

The results obtained using modified PSO and SFLA described in the present work had an 8.1790% reduction 

in cost function evaluation as compared to the Taguchi method by [17], 1.1619% reduction compared to the Crude 

Monte-Carlo method and 13.41% reduction compared to the Stray Process used by [4], and around an 11% 

reduction compared to results obtained by other researchers. Modified SFLA generally takes lesser number of 

convergence iterations (CI) on average as compared to modified PSO, but the average run time (RT) for the same 

number of iterations (1000) is greater for modified SFLA. So, it's essentially a trade-off between average CI and 

average RT.  

Further, the results for variables x1 to x7 obtained using modified PSO and SFLA can be verified by 

developing CAD models and conducting finite element analysis (FEA). In this way, the minor constraint violations 

can be evaluated to check the degree of damage caused by them.  

As per the No Free Lunch theorem, no single algorithm is best suited for all optimization problems. Along 

the same lines, certain nature-inspired algorithms work better than others for speed reducer problems. The 

algorithms with promising results can be analysed to understand their components/mechanisms that support their 

optimal results. For example, the inertia weight factor in PSO is attributed to its success in a variety of applications. 

Similarly, in memetic algorithms like SFLA, since information can be directly transmitted among frogs within the 

same iteration instead of waiting for the next one, the propagation of optimal memes is faster, which contributes to 

the faster convergence observed in this algorithm. For future work, these algorithm-specific mechanisms could be 

identified and combined in the form of a hybrid algorithm that could be used to solve families of similar 

optimization problems. 
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