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Abstract. The remaining Useful Life (RUL) forecast for rolling bearings is still the crucial part of condition-based 

maintenance (CBM) for mechanical systems. To predict the RUL, the existing research utilized traditional Deep 

Learning techniques, however, it has trouble quantifying uncertainty. Therefore, this research suggested a novel DL 

model to improve RUL prediction. Initially, to define the degree of rolling bearing deterioration and comprehend the 

non-linear qualities, time domain features, frequency domain features, & time-frequency domain features are 

removed. Then, this study suggested using a Bi-LSTM - RF framework to predict the RUL, this framework has an 

LSTM layer in a combination of forward and backward motion, a fully connected layer, an RF classifier, & a 

dropout layer. As a result, our proposed deep learning-based RUL prediction obtains the  Accuracy of 0.9845, 

Precision of 0.93, Recall of 1.0, & F1-score of 0.9656. 

 

Keywords: bidirectional long short term memory (Bi-LSTM), deep learning, degradation features extraction, 

normalization, remaining useful life (RUL) prediction 

 

Introduction  

Due to their significant impact on safety, production, and financial efficiency, equipment stability, and 

reliability are essential in many industrial domains. Reduced maintenance costs and unneeded downtime are 

advantages of Prognostic and Health Management (PHM), which is further known as terms like Condition-Based 

Maintenance (CBM) & predictive maintenance (PdM) [1-2]. In rotating equipment, rolling bearings are a common 

mechanical component that must frequently sustain a variety of mechanical and thermal pressures. Bearing 

problems account for more than 40% of motor failures. RUL forecasting, fault locating, and anomaly detection are 

all components of PHM for rolling bearings [3]. Utilizing historical trajectory data, one may evaluate and project 

roller bearings' RUL, it is crucial for maintaining mechanical material effectively during its service life. It is 

suggested to develop structure accessibility, dependability, & less expensive equipment maintenance. The 

Remaining Service Life (RSL) of the linked equipment before failure is considered to have happened is precisely 

specified as RUL [4]. Each of the maximum essential elements of spinning machinery, rolling bearings frequently 

has a straight effect on the security of the mechanical system's overall operation. As a result, production safety may 

be ensured and significant economic benefits can be realized through actual & precise RUL prediction of rolling 

bearings [5].  

Three general categories may be used to classify RUL prediction approaches: physics model-based 

techniques, data-driven techniques, & hybrid techniques. To create a physical model, methodologies based on 

physical models investigate the components' damage mechanisms & the rules of degradation for certain fault modes. 

This typically calls for a variety of previous information, making it challenging to exactly create a deterioration 

model in difficult situations [6–9]. Data-driven techniques goal to change the information given by IoT into 

dependent models, either parametric or non-parametric, which only use sufficient previous data and do not require 

knowledge of specific deterioration processes [10,11]. They can show the fundamental relationships and causes 

between RUL and the raw sensor data. Data-driven methods are frequently utilized in industrial applications as a 

result of the quick development of intelligent technology [12].  

The RUL is predicted using machine learning techniques that identify features from raw sensor data using 

signal processing methods and expert knowledge [13–16]. As a result, deep learning technology offers a potentially 

effective way to raise RUL prediction accuracy. To extract features from high-dimensional data, deep learning 

techniques like Recurrent Neural Networks (RNN), Long Short-Term Memories (LSTM), Gated Recurrent Units 

(GRU) for time series modeling, and convolutional neural networks (CNN) have been extensively used. Even 

though the deep learning neural network has demonstrated tremendous potential for RUL prediction, there are a few 

data- and practically-related difficulties that merit more thought. Since physical equipment operates under 

complicated settings, noise fluctuations and measurement mistakes must be present in the sensor streaming data. 

Therefore, the RUL prediction and feature extraction are greatly impacted by the changing variations.  

The studies mentioned above have confirmed the potential of DL-based approaches for RUL prediction. But, 

the majority of these techniques use deterministic neural networks as their implementation, which eventually 

produces RUL point estimation. There are several different kinds of forecast ambiguities, including quantification 

uncertainty caused by interference from noise, model uncertainty relating to the forecast model, and unreliability 

environments caused by operation irrationality, which have an impact on RUL prediction in real applications [17]. 

Many important judgments are founded on the quantification of uncertainty. The anticipated cost of the RUL 

prediction point struggles to provide adequate direction for the maintenance strategy in real-world situations if the 
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uncertainty is not quantified. Therefore, this research proposed a bearing RUL prediction approach to address these 

issues. The following is the primary contribution of this study: 

For RUL prediction, this research proposed a BiLSTM – RF framework, which consists of the following 

steps: 

- the first step of this framework is the extraction of degradation features in rolling bearing. Here, we extract 

13 frequency domain features to analyze the vibration signal, 12 time-domain features to represent the degree of 

rolling bearing degeneration, and 5 time-frequency domain features to comprehend its nonlinear characteristics;  

- then, the extracted features are get normalized, then we create the sample data by using the sliding time 

window approach. Then, for prediction, this work employs a Bi-LSTM model, which employs LSTM layers in both 

forward and backward directions, a fully connected layer, an RF classifier, & a dropout layer. 

As a result, when compared to the current methodologies, this suggested RUL prediction offers greater 

accuracy.  

This research project is organized as follows: Segment 2 investigates an artificial intelligence-based method 

to predict the RUL. Following that, Segment 3 describes a proposed deep learning model to predict the RUL, and 

Segment 4 contains the simulation findings and comparison analysis of the suggested method. This research study is 

concluded in Segment 5. 

 

1. Literature survey 

Statistical models or Artificial Intelligence are typically used in data-driven ways to predict RUL. The 

construction of statistical models using empirical knowledge is the basis of statistical model-based approaches. A 

Wiener process-based real-time prognostic strategy for wind turbine bearing was introduced by Hu et al. [18]. The 

parameters of a Wiener process model are determined using maximum likelihood estimation. When combined the 

reverse Gaussian distribution, the RUL of a wind turbine bearing may determine. It is difficult to choose the right 

parameters for a given scenario because the statistical models' parameters vary depending on the scenario. An 

adaptive network-based fuzzy inference system (ANFIS)-based prognostic technique was presented by Wu et al. 

[19]. After the data pre-processing is complete, statistical features from the multi-sensor data are extracted. ANFIS 

and polynomial curve fitting is then used to fuse data from many sensors and estimate the RUL. For bearing under 

various operational circumstances, an RUL prediction technique was suggested by Kundu et al. [20]. This method 

establishes a Weibull accelerated failure time regression (WAFTR) model that acknowledges together operational 

state variables & monitoring signals. In conclusion, the outcomes demonstrate this strategy takes better forecast 

presentation. While allowing them to examine enormous amounts of data, the standard AI model's shallow designs 

restrict their capacity to learn complicated non-linear correlations.  

Deep learning is already becoming a powerful technique for pattern detection and data prediction. DL is an 

addition of ANN that can extract data features from input data by performing deep analysis and mining using several 

hidden layers & nonlinear transformations [21]. Due to its remarkable representative feature capture capacity, it has 

established extensive use in the area of roller bearings RUL prediction. Hu et al. [22] utilized the DBN to construct 

the rolling bearing health index extractor, combining the network because of the diffusion process technique to 

forecast RUL. Deep convolution neural networks (DCNN), which can use several convolutional and pooling layers 

to extract hidden features from input data, were employed by Cheng et al. [23] to accomplish RUL prediction of 

rolling bearing. The RUL estimation issue was seen by the RNN network as a time series regression problem, which 

makes it a prime choice for DL techniques to analyze time series data and solve.  According to CNN & the Bi-

LSTM network, Zhao C. et al. [24] built the hybrid two-channel prediction model. Since multivariate degradation 

equipment stores information about various elements of degradation, degradation laws, life contribution rates, and 

coupling relationships between the various aspects are all diverse. The aforementioned model will inevitably have 

limitations when used to anticipate data from a single network. As a normal RNN, Bi-LSTM may successfully 

overcome the Temporal Convolution network's limitations, However, compared to convolution operation, its short-

term memory is slower and less precise. The LSTM model & the AdaBoost regression model were combined to 

create a hybrid data-driven RUL prediction technique by Zhu et al. [25] depending on data trajectory expansion. The 

studies mentioned above have confirmed the potential of DL-based approaches for RUL prediction. RUL prediction 

in practical applications is impacted by a variety of prediction uncertainties, including measurement uncertainty 

caused by noise interference, model uncertainties relevant to the prediction model, & uncertainty conditions affected 

by operation haphazardness. The predicted RUL prediction point value struggles to provide adequate guidance for 

the preservation approach in real-world presentations if the uncertainty is not defined [26]. According to Li et al. 

[27], to deal with uncertainty in deep learning, Bayesian inference can be utilized as a learning method. A possible 

way for measuring uncertainty is the Bayesian approach. 

Eknath et al. [28] DCNN & Gated Recurrent Units (GRU) are used in a unique prediction approach that uses 

feature extraction to derive vibration signal properties. Simultaneously, to estimate a rolling bearing's remaining 

usable lifespan, the Gated recurrent unit (BiGRU) has been used. However, its sluggish convergence rate and 

learning efficiency lead to an excessively extended training period. 

According to the study and description above, it can be said that both traditional deep learning techniques are 

hindering RUL prediction at the moment and common uncertainty measurement techniques have a hard time 
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adapting to RUL prediction methods. These challenges must be overcome; this research suggests a bearing RUL 

prediction technique depends on RNN & unreliability quantification. 

 

2. Proposed approach 

RUL prediction is a crucial component to increase the dependability & availability of machines. The bearing 

deterioration rule was mined from operational data in the current study using DL to get the RUL. However, building 

a suitable DL model for precise RUL prediction is typically challenging due to the complexity of operating data.  

Also, external uncertainties have a big impact on bearing degradation, to overcome that existing research utilized 

traditional deep learning techniques, however, it has trouble quantifying uncertainty, and conventional approaches to 

measuring uncertainty have limited ability to accommodate RUL prediction techniques. In addition, the Bi-GRU 

model is used in the existing RUL prediction, due to difficulties including a poor convergence rate and low learning 

efficiency, training times are excessively long [28]. Therefore, this research proposed a novel DL-based RUL 

prediction which was described in the following section. 

 

 
 

Fig. 1. - Architecture of the proposed RUL prediction approach 

 

2.1  Building Feature Set 

Since vibration signals may include a wealth of information, they are frequently chosen for rolling bearing 

deterioration process monitoring. Since the vibration signal cannot automatically portray the bearing's deteriorating 

method, the degradation characteristics must be removed from the raw vibration data. To replicate the degrading 

method of rolling bearings from various dimensions, time-domain features, frequency-domain features, & time-

frequency domain features were retrieved in this research. 

Different techniques may be used to obtain the deterioration characteristics of bearings in different domains. 

Even though frequency domain characteristics were typically statistical features depending on the Fast Fourier 

transform, which is useless for explaining how a single frequency changes over time, bearing deterioration is a non-
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stationary dynamic method with substantial time correlation. Time-frequency domain features were chosen to take 

the transitory peculiarities in the bearing deterioration. 

In contrast to its role in fault detection, RUL prediction must be compatible with the degradation process, 

which is impacted by failure types. As a result, some other characteristics that are only appropriate for certain failure 

modes remain not appropriate for RUL prediction. The characteristics that may accurately depict the deterioration 

process and have predictability are screened using three feature assessment indices: a correlation indicator, a 

monotonicity indicator, and a robustness indicator. 

 

2.1.1 Time domain feature extraction 

One of the easiest and most efficient techniques for analyzing vibration signals is the time domain 

deterioration characteristic. The vibration signal was statistically analyzed to determine the time-domain 

deterioration features. To represent the degree of rolling bearing degradation, 12 time-domain degradation 

characteristics are removed and displayed. 

 
Table 1. Time domain degradation features 

S.No Name Formula 

1 Absolute Mean 

𝑇1 =
1

𝑁
∑|𝑥(𝑡)|

𝑁

𝑡=1

 

2 Root Mean Square 

𝑇2 = √
1

𝑁
∑𝑥(𝑡)2

𝑁

𝑡=1

 

3 Peak 𝑇3 = 𝑚𝑎𝑥 (𝑥(𝑡)) 

4 Square Root Amplitude 

𝑇4 = [
1

𝑁
∑√|𝑥(𝑡)|

𝑁

𝑡=1

]

2

 

5 Skewness 

𝑇5 =
1

𝑁
∑(𝑥(𝑡) − −𝑥)3
𝑁

𝑡=1

 

6 Kurtosis 

𝑇6 =
1

𝑁
∑(𝑥(𝑡) − −𝑥)4
𝑁

𝑡=1

 

7 Waveform Indicator 
𝑇7 =

𝑇2

|−𝑥|
 

8 Peak Indicator 
𝑇8 =

𝑇3

𝑇2

 

9 Impulse Indicator 
𝑇9 =

𝑇2

|−𝑥|
 

10 Margin Factor 
𝑇10 =

𝑇3

𝑇4

 

11 Kurtosis Factor 
𝑇11 =

𝑇6

𝑇2

 

12 Skew Factor 
𝑇12 =

𝑇5

𝑇2

 

 

Table 1. T1–T12 in the table stand for time domain deterioration characteristics,  𝑥(𝑡), t =1,2,..N. N, where N is 

the total number of signal data values, stands for the signal data points in vibration signals. This characteristic 

capture the altering regulations of various bearing health states. For instance, the RMS value primarily imitates the 

amplitude of the overall energy of the entire bearing monitoring signal, whereas the maximum value depicts the 

effect force on the bearing at the specific value of failure, the peak factor can be used to define the signal's peak 

level for bearing monitoring. 

 

2.1.2 Frequency domain feature extraction 

It is required to do frequency domain analysis on the vibration signal to acquire the frequency domain 

deterioration aspect since the error features of rolling bearings were typically concealed in frequency domain 

information. Here, the monitoring signal is transformed into a frequency spectrum using the fast Fourier transform, 

& 13 frequency domain characteristics were then retrieved from the monitoring signal's frequency spectrum. 
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Table 2. Frequency domain degradation features 

S.No Formula 

1 
𝐹1 =

∑ 𝑠(𝑖)𝐾
𝑖=1

𝐾
 

2 
𝐹2 =

∑ (𝑠(𝑖) − 𝐹1)
2𝐾

𝑖=1

𝐾 − 1
 

3 
𝐹3 =

∑ (𝑠(𝑖) − 𝐹1)
3𝐾

𝑖=1

𝐾(√𝐹2)
3  

4 
𝐹4 =

∑ (𝑠(𝑖) − 𝐹1)
4𝐾

𝑖=1

𝐾(𝐹2)
2

 

5 
𝐹5 =

∑ 𝑓𝑖𝑠(𝑖)
𝐾
𝑖=1

∑ 𝑠(𝑖)𝐾
𝑖=1

 

6 

𝐹6 = √
∑ 𝑓𝑖

4𝑠(𝑖)𝐾
𝑖=1

∑ 𝑓𝑖
2𝑠(𝑖)𝐾

𝑖=1

 

7 

𝐹7 = √
∑ 𝑓𝑖

2𝑠(𝑖)𝐾
𝑖=1

∑ 𝑠(𝑖)𝐾
𝑖=1

 

8 

𝐹8 = √
∑ (𝑓𝑖 − 𝐹5)

2𝑠(𝑖)𝐾
𝑖=1

𝐾
 

9 
𝐹9 =

∑ 𝑓𝑖
2𝑠(𝑖)𝐾

𝑖=1

√∑ 𝑠(𝑖)  ∑ 𝑓𝑖
4𝑠(𝑖)𝐾

𝑖=1     𝐾
𝑖=1

 

10 
𝐹10 =

𝐹6

𝐹5

 

11 
𝐹11 =

∑ (𝑓𝑖 − 𝐹5)
3𝑠(𝑖)𝐾

𝑖=1

𝐾𝐹𝐹6
3  

12 
𝐹12 =

∑ (𝑓𝑖 − 𝐹5)
4𝑠(𝑖)𝐾

𝑖=1

𝐾𝐹𝐹6
4  

13 

𝐹13 =
∑ (𝑓𝑖 − 𝐹5)

1
2𝑠(𝑖)𝐾

𝑖=1

𝐾𝐹𝐹6

 

 

These frequency domain properties are listed in Table 2, in which the vibration signal's frequency spectrum is 

depicted by s(i).  𝑥(𝑡), i = 1,2,3,.., K, the amount of spectral lines is K, &  the frequency of the ith spectral line is 

represented by 𝑓𝑖  . Features 𝐹1- 𝐹5 characterize alterations in the major frequency band location of the recorded 

signal in the frequency domain. The aspect domain spectral energy distribution's dispersion level is described by the 

values of 𝐹6- 𝐹13.  

 

2.1.3 Time - Frequency domain feature extraction 

Rolling bearing monitoring signals are often non-linear and non-stationary during real operation. Due to the 

complex interaction between time, frequency, and amplitude, the Time-Frequency (TF) domain analysis of bearing 

monitoring signals was used to identify the features of changes in bearing health status. In this work, a three-level 

wavelet packet decomposition technique called the Haar wavelet was utilized to break down the vibration signal into 

a collection of wavelet nodes. 

Entropy is suggested as a way to gauge both the complexity of the data and the likelihood that a new signal 

model will emerge. The aim of assessing the sparsity is to provide a purpose, which expresses the sparse distribution 

of energy. The KL divergence of the multivariate joint probability density & its marginal probability density product 

was used to characterize the mutual information of several variables. A physical quantity called kurtosis has been 

presented as a way to assess how much a random variable has a Gaussian distribution. 

Where TF1 is represented as energy entropy, the percentage of each value in the time-frequency energy 

histogram is called 𝑝𝑖  , the energy entropy can also show the degree of uncertainty in the energy distribution. The 

time-frequency energy histogram is divided into m parts according to frequency, & TF2 is shown as the energy 

correlation coefficient. Where 𝑐𝑜𝑟𝑐𝑜𝑒𝑓(.) is the cross-correlation function. TF3 is represented as energy Sparsity, 

where the sparsity is determined using x. TF4 is represented as Energy Mutual Information, p(x) and q(x) are two 

distinguish probability density functions of the random vector x. TF5 is represented as Energy Kurtosis, where 𝜇  

means data mean, &  𝜎 means  standard deviation, and 𝑥𝑖   is the random variable with N observations (i=1,2,..., N). 
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Table 3. Time-Frequency domain degradation features 

S.No Name Formula 

1 Energy Entropy 
𝑇𝐹1 = −∑𝑝𝑖 log(𝑝𝑖

𝑛

𝑖=1

) 

2 Energy Correlation Coefficient 𝑇𝐹2 = [𝑐𝑜𝑟𝑐𝑜𝑒𝑓(1), 𝑐𝑜𝑟𝑐𝑜𝑒𝑓(2), … , 𝑐𝑜𝑟𝑐𝑜𝑒𝑓(𝑚) ]𝑇  

3 Energy Sparsity 
𝑇𝐹3 =

‖𝑋‖𝑝

𝑛
1

𝑝−1/2⁄
. ‖𝑋‖2

 

4 Energy Mutual Information 
𝑇𝐹4 = ∫𝑃(𝑥) log

𝑃(𝑥)

𝑞(𝑥)
𝑑𝑥 

5 Energy Kurtosis 
𝑇𝐹5 =

∑ (𝑥𝑖 − 𝜇)𝑁
𝑖=1 𝑁⁄

𝜎4
− 3 

 

2.1.4 Degradation feature selection 

RUL prediction, in contrast to its function in fault detection, must be compatible with the deterioration 

process, which failure modes affect. As a result, a few different characteristics that are only appropriate for certain 

failure modes were not appropriate for RUL prediction. Using a correlation indicator and three feature evaluation 

indices Corr( f, t), monotonicity indicator, Mon( f ), and robustness indicator, Rob(f ), were employed to identify 

characteristics that can accurately and predictably reflect the deterioration process [29]. 

First, when assessing the monotonic growing or reducing the development of the degradation characteristics, 

the monotonicity is stated as: 

 

𝑀𝑜𝑛 =  |
𝑛𝑜.𝑜𝑓 𝑑𝐹>0

𝐿−1
−

𝑛𝑜.𝑜𝑓 𝑑𝐹<0

𝐿−1
|     (1) 

 

L denotes the amount of signal models, & the derivative of the aspect sequence is called dF. 𝑀𝑜𝑛 denotes a 

quantity between 0 and 1, where 1 means the character is fully monotonous and 0 means it is constant. 

The connection between the rolling bearing degradation characteristics and the degradation period is then 

evaluated using the Pearson correlation coefficient (PCC), which is written as: 

 

𝑃𝐶𝐶 =
|∑ (𝐹𝑡−�̅�)(𝐿𝑡−�̅�)𝑇

𝑡=1 |

√∑ (𝐹𝑡−𝐹)2 ∑ (𝐿𝑡−�̅�)2𝑇
𝑡=1

𝑇
𝑡=1

                         (2) 

 

Where 𝐹𝑡represents the current value of the deterioration feature 𝑡 & 𝐿𝑡 displays the time value associated with 

the signal sample. The amount of signal samples is T.  The PCC also has a 0–1 range. 1 indicates that the 

degradation characteristic and the degradation time are perfectly connected: 

 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
1

𝑇
∑ exp (− |

𝐹𝑡

𝐹
|)𝑇

𝑡=1    (3) 

 

To identify deterioration characteristics that can precisely depict the deterioration procedure of rolling bearings, 

three pointers are linearly integrated to create selection criteria (SC). The SC formula is shown as: 

 

𝑆𝐶 = 𝜔1𝑀𝑜𝑛 + 𝜔2𝑃𝐶𝐶 + 𝜔3𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠   (4) 

 

Where 𝜔𝑖 is the weighting coefficient. 

 

2.2 Standardizing Features and Constructing Samples 

The comparative size of various aspect measures has a significant impact on training. The characteristics with 

big magnitudes would be crucial in model training if screened features weren't regular. The characteristics with 

modest magnitudes, however, have trouble making it easier to update model parameters. As a result, since some 

crucial properties were not included in the model training process, it is problematic to train the model to its optimum 

form. Additionally, this would result in frequent gradient direction oscillations in the process of model optimization, 

which would hinder convergence and lengthen training. As a routine pre-processing step, normalizing the input 

characteristics into a machine learning model is done most frequently by employing the mean and standard 

deviation. The Z-score standardization criteria are requested to handle partitioned characteristics. The formulation of 

the Z-score standardization criterion is: 

 

𝑋𝑠𝑡𝑎𝑛𝑑 =
𝑋𝑜𝑟𝑖𝑔−𝜇

𝜎
                                                                                    (5) 
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where 𝑋𝑠𝑡𝑎𝑛𝑑 and 𝑋𝑜𝑟𝑖𝑔 are the original signal & the standardized signal, and the original signal's variance & mean, 

respectively. 

In this research, model information that satisfies the input specifications of Bi-LSTM is created using the 

sliding time window approach in addition to normalizing the aspect signals. The input size and length of the 

sequence must be specified in the model input for the Bi-LSTM prediction model. After processing in the preceding 

stages, the sample data constitute a two-dimensional array of size 𝑁𝑠𝑎𝑚𝑝𝑙𝑒_𝑝𝑜𝑖𝑛𝑡 × 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , where 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒_𝑝𝑜𝑖𝑛𝑡𝑎𝑛𝑑 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒 is the quantity of features and sampling points, respectively. It is necessary to first 

identify the sample length that corresponds to the sequence length. The input sample is the distance of the sample, 

𝑁𝑙𝑒𝑛𝑔𝑡ℎ, the information related to the model positions 0-𝑁𝑙𝑒𝑛𝑔𝑡ℎ, and the sample label is the RUL of the 𝑁𝑙𝑒𝑛𝑔𝑡ℎ-th 

sampling point. To get a sequence of input samples, after that, a single unit is added to the sampling time axis to 

advance the interception window, & the previous action is frequent. Since neighboring samples built using sliding 

time windows overlap, the training set of data can be perfectly fitted using Bi-LSTM. 

 

2.3 RUL prediction based on Bi-LSTM – RF Model 

An LSTM layer, a fully connected layer, an RF classifier, & a dropout layer make up the proposed Bi-LSTM-

RF-based prediction model in this research. The Bi-LSTM - RF's suggested design is seen in Figure 2.  

 

 
 

Fig. 2. - Architecture of the Bi-LSTM – RF 
 

A Bi-LSTM is a bidirectional variation of the LSTM that can analyze lengthy data sequences by learning in each 

direction, including forward and backward. To efficiently learn the long-term data sequences in both forward and 

backward orientations, Bi-LSTM uses two distinct hidden layers. To access long-range information, it is desirable to 
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record two-direction contextual relationships. It is made up of two LSTMs, the first of which feeds the learning 

process in an onward manner, and the second of which is utilized to learn from the inputs in a backward (reverse) 

way. 

 Here, ℎ⃗   and  ℎ⃗⃗⃗⃖  are utilized to signify the onward and reverse hidden layers' respective outputs separately.  

The training method for both LSTM units makes use of the ordered input data sequences. The forward ℎ⃗ 𝑡  and 

ℎ⃖⃗𝑡 LSTM layers' output is estimated using a recursive technique. The mode property, which includes the following 

potential merging approaches: average, sum, multiplied, and concat, is used to combine the output of both LSTM 

layers.  

The design we've suggested calls for an average mode to combine results from onward and reverse LSTM units. 

In conclusion, the combined output is obtained using a flattened layer 𝑓𝑙𝑎𝑦𝑒𝑟  which is then converted into a one-

dimensional vector v and passed to the softmax function to get the desired result.   

Equation 6 shows how the layer of Bi-LSTM concatenates the output sequences of both LSTM units using the 

merge mode approach to produce a two-dimensional output vector, Y, which is used to build bi-directional 

sequences. 

  

𝒚𝒕 =∝ (ℎ⃗ 𝑡 , ℎ⃖⃗𝑡)                                                                                  (6) 

 

Where ∝ denotes the merge mode approach applied to the ℎ⃗ 𝑡 and ℎ⃖⃗𝑡  output sequences, respectively. To combine 

the output sequences of both the onward and reverse LSTM units, the symbol ∝ denotes an average mode method. 

The multiplication function, summation function, averaging function, or concatenating function can be used as the 

merge mode technique. The final result of the two LSTM units is shown as a one-dimensional vector, Y =
[y1, y2, … , yt], where the last component, yt, is the best-predicted value for the following time iteration.  

 

A tanh function serves as the activation function after the LSTM layer, followed by two linked layers on top 

of each other. The dropout layer was employed in the testing step to measure the prediction uncertainty and avoid 

over-fitting. LSTM between two layers, and two completely connected layers in this investigation, a dropout layer is 

placed. 

  Then, the RFC was utilized for the final RUL prediction. The ensemble learning idea, which is useful for 

prediction issues, is the foundation of RF. The ensemble learning idea, which is useful for prediction issues, is the 

foundation of RF. As the name suggests, RF is a classifier that improves classification accuracy by using multiple 

decision trees on different dataset subsets. Instead of relying just on one decision tree, the random forest together 

forecasts from all decision trees & predicts the eventual decision made based on the majority of estimates. As the 

number of trees rises, so does the precision and danger of over-fitting. As the number of trees rises, so does the 

precision and danger of over-fitting. Finally, to reduce the cost function, the Adam optimizer is utilized, & 

associated learning rate is set to 0.001. 

 
Table 4. Results of the proposed method with different epochs 

Epoch Learning rate Dropout MSE` MAE 

10 0.001 0.2 2.3850 1.3009 

20 0.001 0.2 2.3850 1.3009 

30 0.001 0.2 2.12 1.2950 

40 0.001 0.2 1.28 1.10 

50 0.001 0.2 1.170 0.95 

 

Additionally, for the suggested prediction model, the RUL point estimates & kernel distributions are obtained 

by calculating the uncertainty using nonparametric kernel density estimation and dropout. The dropout procedure 

resembles parallel network training with a predetermined network topology. As a consequence, when the same data 

are repeatedly input into a Bi-LSTM-based prediction model with operational dropout, approximately alternative 

forecast outcomes may be obtained, indicating the quantification of uncertainty. The mean value may be thought of 

as the RUL's point estimation. These prediction findings may be processed using the nonparametric kernel density 

estimation to get the kernel density distributions of the RUL at various model locations, which could have been 

utilized to provide judgments with a strong basis in uncertainty. 

 

3. Result and discussion 

This segment discusses the performance of our suggested explanation as well as the implementation results. 

Also mentioned are the comparison outcomes from the baseline method.  

Tool: PYTHON 3 

OS: Windows 7 (64-bit) 

Processor: Intel Premium 

RAM             : 8GB RAM 
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3.1 Dataset Description 

The IMS Bearing dataset, which was produced by the NSF 1/UCR Centre for Intelligent Maintenance 

System (IMS), was used in this study.  

 

3.1.1 Experimental Setup 

A shaft has four bearings placed on it. An AC motor connected to the shaft by rub belts controlled the 

revolution speed to remain constant at 2000 RPM. A spring mechanism provides a radial force of 6000 lbs on the 

shaft & bearing. All bearings were greased by force. As seen in Figure 3, Rexnord ZA-2115 double-row bearings 

were mounted on the shaft. PCB 353B33 The bearing housing was equipped with High Sensitivity Quartz ICP 

accelerometers (two accelerometers for all bearing (x- & y-axises) for data set 1, and one accelerometer for every 

bearing for data sets 2 & 3). Figure 1 illustrations display the positioning of the sensors. All failures happened next 

to the bearing had completed more than its intended lifetime above 100 million revolutions. 

 

 
 

Fig. 3. Experimental Setup 

 

3.1.2 Structure of IMS data 

The data packet contains three (3) data sets. A test-to-failure experiment is described in each piece of data. 

Every data set was composed of separate files that are snapshots of a 1-second vibration signal taken at 

predetermined intervals. All file has a sampling rate of 20 kHz & a total point count of 20,480. The document name 

displays the date of data gathering. A record (row) in a file that contains information is known as a data point. NI 

DAQ Card 6062E enabled data collecting. The research was restarted the following working day, as shown by 

longer time stamp intervals (seen in file names). 
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Table 5. Dataset Details 

Parameters Set No.1 Set No.2 Set No.3 

Recording 

Duration 

October 22, 2003 12:06:24 to 

November 25, 2003 23:39:56 

February 12, 2004 

10:32:39 to February 19, 

2004 06:22:39 

March 4, 2004 09:27:46 

to April 4, 2004 19:01:5 

No. of files 2,156 984 4448 

No. of 

channels 

8 4 4 

Channel 

Arrangement 

Bearing 1 – Ch 1&2; Bearing 2 – 

Ch 3&4;  

Bearing 3 – Ch 5&6; 

Bearing 4 – Ch 7&8. 

Bearing 1 – Ch 1; 

Bearing 2 – Ch 2;  

Bearing 3 – Ch 3; 

Bearing 4 – Ch 4; 

Bearing 1 – Ch 1; 

Bearing 2 – Ch 2;  

Bearing 3 – Ch 3; 

Bearing 4 – Ch 4; 

File Recording 

Interval 

Except for the first 43 files, which 

were captured every 5 minutes, 

every 10 minutes. 

Every 10 minutes Every 10 minutes 

File Format ASCII ASCII ASCII 

Description An inner race flaw and a roller 

element defect both appeared in 

bearings 3 and 4 after the test-to-

failure experiment. 

After the test-to-fail 

experiment, bearing 1 

experienced outer race 

failure. 

After the test-to-fail 

experiment, bearing 3 

experienced outer race 

failure. 

 

3.1.3 Training and Testing Loss of Dataset 

The training loss & testing loss of dataset 1 is 0.0278, and 0.0275 at epoch 34, dataset 2 is 0.0038 and 0.0037 

at epoch 42, and dataset 3 is 0.0255 and 0.0252 at epoch 41 by using our proposed Bi-LSTM – RF which is 

presented in figure 4 (a), (b) and (c). As a result, dataset 2 has less training and testing loss when compared to the 

existing dataset. 

 

 
 

Fig. 4. Train and Test Loss of the dataset 

 

 

 

 

 

 

 

 

 

 

 

                                  (a) (b) 

 

  

 

 

 

 

 

 

         (c) 
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3.2 Parameter Settings 

 
Table 6. Parameter Settings of the proposed approach 

Algorithm Parameters Value 

 Learning rate 0.001 

Batch Size 64 

Dropout  0.2 

Testing Size 0.25 

Training Size 0.75 

Bi-LSTM Input Size 64×25×9 

LSTM (9,9) 

Dropout 0.2 

LSTM (9,9) 

Dense (9× 25 × 100), linear 

Dropout 0.2 

Dense (100,1) 

Output (64,1) 

Optimizer  Adam 

RF Random state  1 

Max_depth 2 

Max_features 30 

 

3.3 Experimental Results 

 

3.3.1 Results of degradation features  

 

 
 

Fig. 5. Results of degradation features 
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This research presented some of the degradation features which are depicted in Figure 5. To define the degree 

of rolling bearing degeneration and comprehend its nonlinear characteristics, these features are retrieved. The 

chosen degradation features can adequately capture the deterioration of rolling bearings. Hence, the identified 

features are accurate and predictable depicting the deterioration process. 

 

3.3.2 RUL Prediction Results 

 
Table 7.  RUL prediction results 

S.No Bearing No Cycle Prediction Is valid  (Normal / 

Suspected) 

(a) Bearing 1 2206 1950 False Suspected 

(c) Bearing 2 2156 1800 False Suspected 

(b) Bearing 3 2231 2281 False Imminent failure 

(d) Bearing 4 2256 2256 False Suspected 

 

 
 

Fig. 6. Results of RUL Prediction 

 

The RUL prediction consequences are exposed in Figure 6. To predict the RUL this research utilized a Bi-

LSTM model, which employs LSTM layers in both forward and backward directions, a dropout layer, an RF 

classifier, & a fully connected layer. The Adam Optimizer is utilized to modify the Bi-LSTM network's parameters. 

Additionally, dropout & nonparametric kernel density estimation is combined for the proposed prediction model to 

quantify the uncertainty, results in the kernel distributions, and RUL point predictions. 

 

3.4 Performance Parameters 

 

Stated figure 7 is a performance measurement for the proposed Bi-LSTM - RF. The following equations are 

used to obtain the f1-score, which is very helpful for assessing accuracy, recall, precision, and other metrics.  

 

     Accuracy = 
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative
                       (7) 

 

                                  Precision = 
True Positive

True Positive+False Positive
                                                  (8) 

 

                                           Recall = 
True Positive

True Positive+False Negative
                                            (9) 

 

 

 

 

 

 

 

 

                                  (a)  (b) 

 

 

 

 

 

 

 

 (c) (d) 
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                                                  F1 Score = 
2∗Precision∗Recall

Precision+Recall
                                                  (10) 

 

Several metrics, including Accuracy, F1 score, precision, & recall have been used to evaluate the 

effectiveness of our suggested method's performance in forecasting RUL.  

 

 
 

Fig. 7. - Performance metrics of the proposed approach 

 

The suggested method's presentation evaluation measures are shown in Figure 7. Accuracy, Precision, Recall, 

and F1-score were measured and found to be respectively 0.9845, 0.93, 1.0, and 0.9656 (dataset 1). The obtained 

values (dataset 2) of Accuracy, Precision, Recall, and F1-score are 0.9786, 0.912, 1.0, and 0.952. The obtained 

values (dataset 3) of accuracy, precision, recall, and f1-score are 0.9953, 0.93, 1.0, and 0.965. By utilizing a unique 

Bi-LSTM - RF methodology for RUL prediction in rolling bearings, our suggested method performs better in terms 

of Accuracy, F1 score, Precision, & Recall.  

The following formula is used to assess index model parameters like MAE and RMSE: 

 

MAE =
∑ |𝑦𝑧𝑖𝑧,𝑓𝑧 − 𝑦𝑧𝑓𝑧̅̅ ̅̅ ̅|

𝑚𝑧
𝑖𝑧=1

𝑚𝑧

                                                            (11) 

where 𝑦𝑧𝑖𝑧,𝑓𝑧 = prediction,  𝑦𝑧𝑓𝑧̅̅ ̅̅ ̅= true value, 𝑚𝑧 = there are a total of N data points. 

 

RMSE = √
∑ (𝑥𝑧𝑖𝑧,𝑓𝑧− 𝑥𝑧𝑓𝑧̅̅ ̅̅ ̅̅ ̅)𝟐

𝑚𝑧
𝑖𝑧=1

𝑚𝑧
                                                           (12) 

where 𝑥𝑧𝑖𝑧,𝑓𝑧 = actual observation time series,𝑚𝑧 = number of non-missing data points,  𝑥𝑧𝑓𝑧̅̅ ̅̅ ̅̅  = estimated time series, 

𝑖𝑧= variable 𝑖𝑧 

 
 

Fig. 8. Error analysis of the proposed approach 
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Figure 8 illustrates the comparison using sample assessment indices such as MAE. The suggested method 

reduces the error by incorporating Bidirectional LSTM with RFC. For dataset 1, the MAE and RMSE errors are 

0.012 and 0.0243, for dataset 2, 0.011 and 0.0239, and dataset 3, 0.013 and 0.0245. 

 

3.5 Comparison analysis 

This segment compares the current methodologies, putting the suggested method up to standard methods like 

LSTM with random features [29], Convolutional Neural Network [29], Adaptive Kalman Filter (AKF) [29], LSTM 

with uncertainty quantification [29], and DCNN-Bi-GRU [28]. 

 

 
 

Fig. 9. Comparison analysis of MAE 
 

Figure 9 illustrates the MAE of the suggested approach. By combining Bi-LSTM with a Random Forest 

classifier, a suggested method lowers the error. Our suggested method related to the baseline LSTM with random 

features, Convolutional Neural Network, AKF, LSTM, and DCNN-Bi-GRU with uncertainty quantification such as 

0.1864, 0.1613, 0.0640, 0.0567, and 0.146. The MAE of the proposed approach is 0.013. As a consequence, our 

suggested strategy makes improved than the current methods. 

 

 
 

Fig. 10. - Comparison analysis of RMSE 

 

Figure 10 illustrates the RMSE of the suggested approach. By combining Bi-LSTM with a Random Forest 

classifier, the suggested method lowers the error. Our suggested method related to the baseline LSTM with random 

features, Convolutional Neural Network, AKF, LSTM with uncertainty quantification, and DCNN-Bi-GRU such as 

0.2463, 0.1613, 0.0775, 0.0567, and 0.167. The RMSE of the proposed approach is 0.053. As a result, our suggested 

strategy performs better than the current methods. 

 

Conclusion 

This research suggested a unique dL model develop the RUL prediction model's accuracy. To predict the 

RUL, Bi-LSTM – RF and uncertainty quantification is proposed. Initially, to define the level of rolling bearing 

degradation, in this study, 12 time-domain features, 13 frequency-domain features, & 5 time-frequency domain 

features were retrieved. Moreover, to identify features that may accurately depict the deterioration process, three 
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feature assessment indices correlation, monotonicity, and robustness are used. The proposed Bi-LSTM - RF model 

is then fed the normalized input characteristics to most accurately forecast the RUL. As a result, this proposed 

approach obtained a greater accuracy, precision, recall, & f1-score of 0.9845, 0.93, 1.0, & 0.9656. Moreover, this 

research obtained a lesser error such as MAE of 0.013, and RMSE of 0.053 when compared to the existing 

approaches. In the future, this research may concentrate on a hybrid deep learning-based framework to predict the 

RUL with the highest accuracy. 
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